江西省重点中学2025届数学高一下期末质量跟踪监视模拟试题含解析_第1页
江西省重点中学2025届数学高一下期末质量跟踪监视模拟试题含解析_第2页
江西省重点中学2025届数学高一下期末质量跟踪监视模拟试题含解析_第3页
江西省重点中学2025届数学高一下期末质量跟踪监视模拟试题含解析_第4页
江西省重点中学2025届数学高一下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省重点中学2025届数学高一下期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设某曲线上一动点到点的距离与到直线的距离相等,经过点的直线与该曲线相交于,两点,且点恰为等线段的中点,则()A.6 B.10 C.12 D.142.如图,在直三棱柱中,,,,则异面直线与所成角的余弦值是()A. B. C. D.3.已知空间中两点和的距离为6,则实数的值为()A.1 B.9 C.1或9 D.﹣1或94.在正方体中,、分别是棱和的中点,为上底面的中心,则直线与所成的角为()A.30° B.45° C.60° D.90°5.若不等式对一切恒成立,则实数的最大值为()A.0 B.2 C. D.36.已知表示三条不同的直线,表示两个不同的平面,下列说法中正确的是()A.若,则 B.若,则C.若,则 D.若,则7.某单位共有老年人180人,中年人540人,青年人a人,为调查身体健康状况,需要从中抽取一个容量为m的样本,用分层抽样方法抽取进行调查,样本中的中年人为6人,则a和m的值不可以是下列四个选项中的哪组()A.a=810,m=17 B.a=450,m=14C.a=720,m=16 D.a=360,m=128.已知函数f(x)=sin(ωx+φ)(其中ω>0,﹣π<φ<π),若该函数在区间()上有最大值而无最小值,且满足f()+f()=0,则实数φ的取值范围是()A.(,) B.(,) C.(,) D.(,)9.已知,,,则的取值范围是()A. B. C. D.10.下面四个命题:①“直线a∥直线b”的充要条件是“a平行于b所在的平面”;②“直线l⊥平面α内所有直线”的充要条件是“l⊥平面α”;③“直线a、b为异面直线”的必要不充分条件是“直线a、b不相交”;④“平面α∥平面β”的充分不必要条件是“α内存在不共线的三点到β的距离相等”;其中正确命题的序号是()A.①② B.②③ C.③④ D.②④二、填空题:本大题共6小题,每小题5分,共30分。11.设a>0,b>0,若是与3b的等比中项,则的最小值是__.12.如图,长方体的体积是120,E为的中点,则三棱锥E-BCD的体积是_____.13.已知,,若,则实数________.14.有五条线段,长度分别为2,3,5,7,9,从这五条线段中任取三条,则所取三条线段能构成一个三角形的概率为___________.15.方程在上的解集为______.16.已知数列满足:,,则数列的前项的和_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,是边长为2的正三角形.若,平面,平面平面,,且.(1)求证:平面;(2)求证:平面平面.18.某算法框图如图所示.(1)求函数的解析式及的值;(2)若在区间内随机输入一个值,求输出的值小于0的概率.19.已知圆,直线平分圆.(1)求直线的方程;(2)设,圆的圆心是点,对圆上任意一点,在直线上是否存在与点不重合的点,使是常数,若存在,求出点坐标;若不存在,说明理由.20.记Sn为等差数列an的前n项和,已知(1)求an(2)求Sn,并求S21.如图,在三棱柱中,平面平面,,,为棱的中点.(1)证明:;(2)求点到平面的距离.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由曲线上一动点到点的距离与到直线的距离相等知该曲线为抛物线,其方程为,分别过点向抛物线的准线作垂线,垂足分别为,由梯形的中位线定理知,所以,故选B.2、D【解析】连结,∵,

∴是异面直线与所成角(或所成角的补角),

∵在直三棱柱中,,,,

∴,,,,

∴,

∴异面直线与所成角的余弦值为,故选D.3、C【解析】

利用空间两点间距离公式求出值即可。【详解】由两点之间距离公式,得:,化为:,解得:或9,选C。【点睛】空间两点间距离公式:。代入数据即可,属于基础题目。4、A【解析】

先通过平移将两条异面直线平移到同一个起点,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可.【详解】解:先画出图形,将平移到,为直线与所成的角,设正方体的边长为,,,,,,故选:.【点睛】本题主要考查了异面直线及其所成的角,以及余弦定理的应用,属于基础题.5、C【解析】

采用参变分离法对不等式变形,然后求解变形后的函数的值域,根据参数与新函数的关系求解参数最值.【详解】因为不等式对一切恒成立,所以对一切,,即恒成立.令.易知在内为增函数.所以当时,,所以的最大值是.故选C.【点睛】常见的求解参数范围的方法:(1)分类讨论法(从临界值、特殊值出发);(2)参变分离法(考虑新函数与参数的关系).6、D【解析】

利用线面平行、线面垂直的判定定理与性质依次对选项进行判断,即可得到答案.【详解】对于A,当时,则与不平行,故A不正确;对于B,直线与平面平行,则直线与平面内的直线有两种关系:平行或异面,故B不正确;对于C,若,则与不垂直,故C不正确;对于D,若两条直线垂直于同一个平面,则这两条直线平行,故D正确;故答案选D【点睛】本题考查空间中直线与直线、直线与平面位置关系相关定理的应用,属于中档题.7、B【解析】

根据分层抽样的规律,计算a和m的关系为:8+a【详解】某单位共有老年人180人,中年人540人,青年人a人,样本中的中年人为6人,则老年人为:180×6540=22+6+代入选项计算,B不符合故答案为B【点睛】本题考查了分层抽样,意在考查学生的计算能力.8、D【解析】

根据题意可画图分析确定的周期,再列出在区间端点满足的关系式求解即可.【详解】由题该函数在区间()上有最大值而无最小值可画出简图,又,故周期满足.故.故.又,故.故选:D【点睛】本题主要考查了正弦型函数图像的综合运用,需要根据题意列出端点处的函数对应的表达式求解.属于中等题型.9、D【解析】

根据所给等式,用表示出,代入中化简,令并构造函数,结合函数的图像与性质即可求得的取值范围.【详解】因为,所以,由解得,因为,所以,则由可得,令,.所以画出,的图像如下图所示:由图像可知,函数在内的值域为,即的取值范围为,故选:D.【点睛】本题考查了由等式求整式的取值范围问题,打勾函数的图像与性质应用,注意若使用基本不等式,注意等号成立条件及自变量取值范围影响,属于中档题.10、B【解析】

逐项分析见详解.【详解】①“a平行于b所在的平面”不能推出“直线a∥直线b”,如:正方体上底面一条对角线平行于下底面,但上底面的一条对角线却不平行于下底面非对应位置的另一条对角线,故错误;②“直线l⊥平面α内所有直线”是“l⊥平面α”的定义,故正确;③“直线a、b不相交”不能推出“直线a、b为异面直线”,这里可能平行;“直线a、b为异面直线”可以推出“直线a、b不相交”,所以是必要不充分条件,故正确;④“α内存在不共线的三点到β的距离相等”不能推出“平面α∥平面β”,这里包含了平面相交的情况,“平面α∥平面β”能推出“α内存在不共线的三点到β的距离相等”,所以是必要不充分条件,故错误.故选B.【点睛】本题考查空间中平行与垂直关系的判断,难度一般.对可以利用判定定理和性质定理直接分析的问题,可直接判断;若无法直接判断的问题可采用作图法或者排除法判断.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由已知,是与的等比中项,则则,当且仅当时等号成立故答案为2【点睛】本题考查基本不等式的性质、等比数列的性质,其中熟练应用“乘1法”是解题的关键.12、10.【解析】

由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.【详解】因为长方体的体积为120,所以,因为为的中点,所以,由长方体的性质知底面,所以是三棱锥的底面上的高,所以三棱锥的体积.【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.13、2或【解析】

根据向量平行的充要条件代入即可得解.【详解】由有:,解得或.故答案为:2或.【点睛】本题考查了向量平行的应用,属于基础题.14、【解析】

列出所有的基本事件,并找出事件“所取三条线段能构成一个三角形”所包含的基本事件,再利用古典概型的概率公式计算出所求事件的概率.【详解】所有的基本事件有:、、、、、、、、、,共个,其中,事件“所取三条线段能构成一个三角形”所包含的基本事件有:、、,共个,由古典概型的概率公式可知,事件“所取三条线段能构成一个三角形”的概率为,故答案为.【点睛】本题考查古典概型的概率的计算,解题的关键就是列举基本事件,常见的列举方法有:枚举法和树状图法,列举时应遵循不重不漏的基本原则,考查计算能力,属于中等题.15、【解析】

由求出的取值范围,由可得出的值,从而可得出方程在上的解集.【详解】,,由,得.,解得,因此,方程在上的解集为.故答案为:.【点睛】本题考查正切方程的求解,解题时要求出角的取值范围,考查计算能力,属于基础题.16、【解析】

通过令求出数列的前几项,猜测是以为周期的周期数列,且每个周期内都是以为首项,2为公比的等比数列.然后根据递推式给予证明,最后由等比数列的前项和公式计算.【详解】当时,,,,,,,当时,,,,,,,当时,,,,,,,猜测,是以为周期的周期数列,且每个周期内都是以为首项,2为公比的等比数列.设中,即,∴,由于都是正整数,所以,所以数列中第项开始大于3,前项是以为首项,2为公比的等比数列.,所以是以为周期的周期数列,所以.故答案为:.【点睛】本题考查等比数列的前项和,考查数列的周期性.解题关键是确定数列的周期性.方法采取的是从特殊到一般,猜想与证明.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】

(1)取的中点,连接,由平面平面,得平面,再证即可证明(2)证明平面,再根据面面垂直的判定定理从而进行证明.【详解】(1)取的中点,连接,因为,且,.所以,.又因为平面平面,所以平面,又平面,所以又因为平面,平面,所以平面.(2)连接,由(1)知,又,,所以四边形是平行四边形,所以.又是正三角形,为的中点,∴,因为平面平面,所以平面,所以平面.又平面,所以.因为,,所以平面.因为平面,所以平面平面.【点睛】本题考查了线面平行的证明,线面垂直,面面垂直的判定定理,考查空间想象和推理能力,熟记定理是关键,是一道中档题.18、(1);(2)【解析】

(1)从程序框图可提炼出分段函数的函数表达式,从而计算得到的值;(2)此题为几何概型,分类讨论得到满足条件下的函数x值,从而求得结果.【详解】(1)由算法框图得:当时,,当时,,当时,,,(2)当时,,当时,由得故所求概率为【点睛】本题主要考查分段函数的应用,算法框图的理解,意在考查学生分析问题的能力.19、(1)直线的方程为.(2)见解析【解析】

(1)结合直线l平分圆,则可知该直线过圆心,代入圆心坐标,计算参数,即可.(2)结合A,M坐标,计算直线AM方程,采取假设法,假设存在该点,计算,对应项成比例,计算参数t,即可.【详解】(1)圆的标准方程为因为直线平分圆,所以,得,从而可得直线的方程为.(2)点,,直线方程为,假设存在点,满足条件,设,则有,当是常数时,是常数,∴,∴,∵,∴.∴存在满足条件.【点睛】本题考查了直线与圆的综合问题,第一问代入圆心坐标,即可,同时采取假设法,计算,利用对应项系数成比例,建立等式,即可.20、(1)an=2n-12;(2)Sn【解析】

(1)设等差数列an的公差为d,根据题意求出d(2)根据等差数列的前n项和公式先求出Sn,再由an=2n-12≥0【详解】(1)因为数列an为等差数列,设公差为d由a3=-6,a6=0所以an(2)因为Sn为等差数列an的前所以Sn由an=2n-12≥0得所以当n=5或n=6时,【点睛】本题主要考查等差数列,熟记通项公式以及

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论