江西省上饶市“山江湖”协作体2025届高一数学第二学期期末检测试题含解析_第1页
江西省上饶市“山江湖”协作体2025届高一数学第二学期期末检测试题含解析_第2页
江西省上饶市“山江湖”协作体2025届高一数学第二学期期末检测试题含解析_第3页
江西省上饶市“山江湖”协作体2025届高一数学第二学期期末检测试题含解析_第4页
江西省上饶市“山江湖”协作体2025届高一数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省上饶市“山江湖”协作体2025届高一数学第二学期期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,圆O所在的平面,AB是圆O的直径,C是圆周上一点(与A、B均不重合),则图中直角三角形的个数是()A.1 B.2 C.3 D.42.若存在正实数,使得,则()A.实数的最大值为 B.实数的最小值为C.实数的最大值为 D.实数的最小值为3.已知的三个内角所对的边分别为,满足,且,则的形状为()A.等边三角形 B.等腰直角三角形C.顶角为的等腰三角形 D.顶角为的等腰三角形4.已知等差数列,前项和为,,则()A.140 B.280 C.168 D.565.设,则的大小关系为()A. B. C. D.6.若变量满足约束条件则的最大值为()A.4 B.3 C.2 D.17.已知圆M:x2+y2-2ay=0a>0截直线x+y=0A.内切 B.相交 C.外切 D.相离8.某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试.现随机抽取了24名笔试者的成绩,统计结果如下表所示.分数段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90]人数234951据此估计允许参加面试的分数线大约是()A.90 B.85C.80 D.759.在正项等比数列中,,数列的前项之和为()A. B. C. D.10.直线2x+y+4=0与圆x+22+y+32=5A.255 B.455二、填空题:本大题共6小题,每小题5分,共30分。11.公比为的无穷等比数列满足:,,则实数的取值范围为________.12.已知等差数列的前项和为,且,,则;13.若,方程的解为______.14.设奇函数的定义域为R,且对任意实数满足,若当∈[0,1]时,,则____.15.在数列中,已知,,记为数列的前项和,则_________.16.数列满足下列条件:,且对于任意正整数,恒有,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,三个内角所对的边分别为,满足.(1)求角的大小;(2)若,求,的值.(其中)18.如图,在四棱锥中,底面是直角梯形,侧棱底面,垂直于和,为棱上的点,,.(1)若为棱的中点,求证://平面;(2)当时,求平面与平面所成的锐二面角的余弦值;(3)在第(2)问条件下,设点是线段上的动点,与平面所成的角为,求当取最大值时点的位置.19.某班在一次个人投篮比赛中,记录了在规定时间内投进个球的人数分布情况:进球数(个)012345投进个球的人数(人)1272其中和对应的数据不小心丢失了,已知进球3个或3个以上,人均投进4个球;进球5个或5个以下,人均投进2.5个球.(1)投进3个球和4个球的分别有多少人?(2)从进球数为3,4,5的所有人中任取2人,求这2人进球数之和为8的概率.20.2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为.享受情况如下表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.员工项目ABCDEF子女教育○○×○×○继续教育××○×○○大病医疗×××○××住房贷款利息○○××○○住房租金××○×××赡养老人○○×××○(i)试用所给字母列举出所有可能的抽取结果;(ii)设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率.21.如图,四棱锥P-ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,E为侧棱PD的中点.(1)求证:PB//平面EAC;(2)求证:AE⊥平面PCD;(3)当为何值时,PB⊥AC?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

利用直径所对的圆周角为直角和线面垂直的判定定理和性质定理即可判断出答案.【详解】AB是圆O的直径,则AC⊥BC,由于PA⊥平面ABC,则PA⊥BC,即有BC⊥平面PAC,则有BC⊥PC,则△PBC是直角三角形;由于PA⊥平面ABC,则PA⊥AB,PA⊥AC,则△PAB和△PAC都是直角三角形;再由AC⊥BC,得∠ACB=90°,则△ACB是直角三角形.综上可知:此三棱锥P−ABC的四个面都是直角三角形.故选D.【点睛】本题考查直线与平面垂直的性质,考查垂直关系的推理与证明,属于基础题.2、C【解析】

将题目所给方程转化为关于的一元二次方程,根据此方程在上有解列不等式组,解不等式组求得的取值范围,进而求出正确选项.【详解】由得,当时,方程为不和题意,故这是关于的一元二次方程,依题意可知,该方程在上有解,注意到,所以由解得,故实数的最大值为,所以选C.【点睛】本小题主要考查一元二次方程根的分布问题,考查化归与转化的数学思想方法,属于中档题.3、D【解析】

先利用同角三角函数基本关系得,结合正余弦定理得进而得B,再利用化简得,得A值进而得C,则形状可求【详解】由题即,由正弦定理及余弦定理得即故整理得,故故为顶角为的等腰三角形故选D【点睛】本题考查利用正余弦定理判断三角形形状,注意内角和定理,三角恒等变换的应用,是中档题4、A【解析】由等差数列的性质得,,其前项之和为,故选A.5、B【解析】

不难发现从而可得【详解】,故选B.【点睛】本题考查利用指数函数和对数函数的单调性比较数大小.6、B【解析】

先根据约束条件画出可行域,再利用几何意义求最值.【详解】作出约束条件,所对应的可行域(如图阴影部分)变形目标函数可得,平移直线可知,当直线经过点时,直线的截距最小,代值计算可得取最大值故选B.【点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7、B【解析】化简圆M:x2+(y-a)2=a又N(1,1),r8、C【解析】

根据题意可从样本中数据的频率考虑,即按成绩择优选择频率为的,根据题意得到所选的范围后再求出对应的分数.【详解】由题意得,参加面试的频率为,结合表中的数据可得,样本中[80,90]的频率为,由样本估计总体知,分数线大约为80分.故选C.【点睛】本题考查统计图表的应用,解题的关键是理解题意,同时还要正确掌握统计中的常用公式,属于基础题.9、B【解析】

根据等比数列的性质,即可解出答案。【详解】故选B【点睛】本题考查等比数列的性质,同底对数的运算,属于基础题。10、C【解析】

先求出圆心到直线的距离d,然后根据圆的弦长公式l=2r【详解】由题意得,圆x+22+y+32=5圆心-2,-3到直线2x+y+4=0的距离为d=|2×(-2)-3+4|∴MN=2故选C.【点睛】求圆的弦长有两种方法:一是求出直线和圆的交点坐标,然后利用两点间的距离公式求解;二是利用几何法求解,即求出圆心到直线的距离,在由半径、弦心距和半弦长构成的直角三角形中运用勾股定理求解,此时不要忘了求出的是半弦长.在具体的求解中一般利用几何法,以减少运算、增强解题的直观性.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

依据等比数列的定义以及无穷等比数列求和公式,列出方程,即可求出的表达式,再利用求值域的方法求出其范围。【详解】由题意有,即,因为,所以。【点睛】本题主要考查无穷等比数列求和公式的应用以及基本函数求值域的方法。12、1【解析】

若数列{an}为等差数列则Sm,S2m-Sm,S3m-S2m仍然成等差数列.所以S10,S20-S10,S30-S20仍然成等差数列.因为在等差数列{an}中有S10=10,S20=30,所以S30=1.故答案为1.13、【解析】

运用指数方程的解法,结合指数函数的值域,可得所求解.【详解】由,即,因,解得,即.故答案:.【点睛】本题考查指数方程的解法,以及指数函数的值域,考查运算能力,属于基础题.14、【解析】

根据得到周期,再利用周期以及奇函数将自变量转变到给定区间计算函数值.【详解】因为,所以,所以,又因为,所以,则,故,又因为是奇函数,所以,则.【点睛】(1)形如的函数是周期函数,周期;(2)若要根据奇偶性求解分段函数的表达式,记住一个原则:“用未知表示已知”,也就是将自变量变形,利用已知范围和解析式求解.15、【解析】

根据数列的递推公式求出该数列的前几项,找出数列的周期性,从而求出数列的前项和的值.【详解】对任意的,,.则,,,,,,所以,.,且,,故答案为:.【点睛】本题考查数列递推公式的应用,考查数列周期性的应用,解题时要结合递推公式求出数列的前若干项,找出数列的规律,考查推理能力和计算能力,属于中等题.16、512【解析】

直接由,可得,这样推下去,再带入等比数列的求和公式即可求得结论。【详解】故选C。【点睛】利用递推式的特点,反复带入递推式进行计算,发现规律,求出结果,本题是一道中等难度题目。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)4,6【解析】

(1)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,求出的值,即可确定出的度数;(2)根据平面向量数量积的运算法则计算得到一个等式,记作①,把的度数代入求出的值,记作②,然后利用余弦定理表示出,把及的值代入求出的值,利用完全平方公式表示出,把相应的值代入,开方求出的值,由②③可知与为一个一元二次方程的两个解,求出方程的解,根据大于,可得出,的值.【详解】(1)已知等式,利用正弦定理化简得,整理得,即,,则.(2)由,得,①又由(1),②由余弦定理得,将及①代入得,,,③由②③可知与为一个一元二次方程的两个根,解此方程,并由大于,可得.【点睛】以三角形和平面向量为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.18、(1)见解析;(2);(3)即点N在线段CD上且【解析】

(1)取线段SC的中点E,连接ME,ED.可证是平行四边形,从而有,则可得线面平行;(2)以点A为坐标原点,建立分别以AD、AB、AS所在的直线为x轴、y轴、z轴建立空间直角坐标系,求出两平面与平面的法向量,由法向量夹角的余弦值可得二面角的余弦值;(3)设,其中,求出,由MN与平面所成角的正弦值为与平面的法向量夹角余弦值的绝对值可求得结论.【详解】(1)证明:取线段SC的中点E,连接ME,ED.在中,ME为中位线,∴且,∵且,∴且,∴四边形AMED为平行四边形.∴.∵平面SCD,平面SCD,∴平面SCD.(2)解:如图所示以点A为坐标原点,建立分别以AD、AB、AS所在的直线为x轴、y轴、z轴建立空间直角坐标系,则,,,,,由条件得M为线段SB近B点的三等分点.于是,即,设平面AMC的一个法向量为,则,将坐标代入并取,得.另外易知平面SAB的一个法向量为,所以平面AMC与平面SAB所成的锐二面角的余弦为.(3)设,其中.由于,所以.所以,可知当,即时分母有最小值,此时有最大值,此时,,即点N在线段CD上且.【点睛】本题考查线面平行的证明,考查求二面角与线面角.求空间角时,一般建立空间直角坐标系,由平面法向量的夹角求得二面角,由直线的方向向量与平面法向量的夹角与线面角互余可求得线面角.19、(1)投进3个球和4个球的分别有2人和2人;(2).【解析】

(1)设投进3个球和4个球的分别有,人,则,解方程组即得解.(2)利用古典概型的概率求这2人进球数之和为8的概率.【详解】解:(1)设投进3个球和4个球的分别有,人,则解得.故投进3个球和4个球的分别有2人和2人.(2)若要使进球数之和为8,则1人投进3球,另1人投进5球或2人都各投进4球.记投进3球的2人为,;投进4球的2人为,;投进5球的2人为,.则从这6人中任选2人的所有可能事件为:,,,,,,,,,,,,,,.共15种.其中进球数之和为8的是,,,,,有5种.所以这2人进球数之和为8的概率为.【点睛】本题主要考查平均数的计算和古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.20、(I)6人,9人,10人;(II)(i)见解析;(ii).【解析】

(I)根据题中所给的老、中、青员工人数,求得人数比,利用分层抽样要求每个个体被抽到的概率是相等的,结合样本容量求得结果;(II)(I)根据6人中随机抽取2人,将所有的结果一一列出;(ii)根据题意,找出满足条件的基本事件,利用公式求得概率.【详解】(I)由已知,老、中、青员工人数之比为,由于采取分层抽样的方法从中抽取25位

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论