2025届山东省菏泽市第一中学高一下数学期末复习检测模拟试题含解析_第1页
2025届山东省菏泽市第一中学高一下数学期末复习检测模拟试题含解析_第2页
2025届山东省菏泽市第一中学高一下数学期末复习检测模拟试题含解析_第3页
2025届山东省菏泽市第一中学高一下数学期末复习检测模拟试题含解析_第4页
2025届山东省菏泽市第一中学高一下数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省菏泽市第一中学高一下数学期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知双曲线的焦点与椭圆的焦点相同,则双曲线的离心率为()A. B. C. D.22.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了了解该地区中小学生的近视形成原因,按学段用分层抽样的方法抽取该地区的学生进行调查,则样本容量和抽取的初中生中近视人数分别为()A., B., C., D.,3.若直线与曲线有公共点,则的取值范围是()A. B.C. D.4.已知函数的部分图象如图所示,则此函数的解析式为()A. B.C. D.5.设有直线m、n和平面、.下列四个命题中,正确的是()A.若m∥,n∥,则m∥nB.若m,n,m∥,n∥,则∥C.若,m,则mD.若,m,m,则m∥6.已知,则的最小值是()A.2 B.6 C.2 D.27.函数的图像()A.关于点对称 B.关于点对称C.关于直线对称 D.关于直线对称8.已知,则的值为()A. B. C. D.29.对于一个给定的数列,定义:若,称数列为数列的一阶差分数列;若,称数列为数列的二阶差分数列.若数列的二阶差分数列的所有项都等于,且,则()A.2018 B.1009 C.1000 D.50010.如图是一圆锥的三视图,正视图和侧视图都是顶角为120°的等腰三角形,若过该圆锥顶点S的截面三角形面积的最大值为2,则该圆锥的侧面积为A. B. C. D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知正实数a,b满足2a+b=1,则1a12.已知点A(-a,0),B(a,0)(a>0),若圆(x-2)2+(y-2)2=2上存在点C13.有6根细木棒,其中较长的两根分别为,,其余4根均为,用它们搭成三棱锥,则其中两条较长的棱所在的直线所成的角的余弦值为.14.下图中的几何体是由两个有共同底面的圆锥组成.已知两个圆锥的顶点分别为P、Q,高分别为2、1,底面半径为1.A为底面圆周上的定点,B为底面圆周上的动点(不与A重合).下列四个结论:①三棱锥体积的最大值为;②直线PB与平面PAQ所成角的最大值为;③当直线BQ与AP所成角最小时,其正弦值为;④直线BQ与AP所成角的最大值为;其中正确的结论有___________.(写出所有正确结论的编号)15.已知直线与圆交于两点,若,则____.16.已知,,则______,______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.用红、黄、蓝三种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,求3个矩形颜色都不同的概率.18.已知函数,,(,为常数).(1)若方程有两个异号实数解,求实数的取值范围;(2)若的图像与轴有3个交点,求实数的取值范围;(3)记,若在上单调递增,求实数的取值范围.19.某校全体教师年龄的频率分布表如表1所示,其中男教师年龄的频率分布直方图如图2所示.已知该校年龄在岁以下的教师中,男女教师的人数相等.表1:(1)求图2中的值;(2)若按性别分层抽样,随机抽取16人参加技能比赛活动,求男女教师抽取的人数;(3)若从年龄在的教师中随机抽取2人,参加重阳节活动,求至少有1名女教师的概率.20.已知圆心在直线上的圆C经过点,且与直线相切.(1)求过点P且被圆C截得的弦长等于4的直线方程;(2)过点P作两条相异的直线分别与圆C交于A,B,若直线PA,PB的倾斜角互补,试判断直线AB与OP的位置关系(O为坐标原点),并证明.21.解关于x的不等式

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据椭圆可以知焦点为,离心率,故选B.2、A【解析】

根据分层抽样的定义建立比例关系即可得到结论。【详解】由图1得样本容量为,抽取的初中生人数为人,则初中生近视人数为人,故选.【点睛】本题主要考查分层抽样的应用。3、D【解析】

将本题转化为直线与半圆的交点问题,数形结合,求出的取值范围【详解】将曲线的方程化简为即表示以为圆心,以2为半径的一个半圆,如图所示:由圆心到直线的距离等于半径2,可得:解得或结合图象可得故选D【点睛】本题主要考查了直线与圆的位置关系,考查了转化能力,在解题时运用点到直线的距离公式来计算,数形结合求出结果,本题属于中档题4、B【解析】

由图象可知,所以,又因为,所以所求函数的解析式为.5、D【解析】

当两条直线同时与一个平面平行时,两条直线之间的关系不能确定,故A不正确,B选项再加上两条直线相交的条件,可以判断面与面平行,故B不正确,C选项再加上m垂直于两个平面的交线,得到线面垂直,故C不正确,D选项中由α⊥β,m⊥β,m,可得m∥α,故是正确命题,故选D6、B【解析】试题分析:因为,故.考点:基本不等式的运用,考查学生的基本运算能力.7、B【解析】

根据关于点对称,关于直线对称来解题.【详解】解:令,得,所以对称点为.当,为,故B正确;令,则对称轴为,因此直线和均不是函数的对称轴.故选:B【点睛】本题主要考查正弦函数的对称性问题.正弦函数根据关于点对称,关于直线对称.8、B【解析】

根据两角和的正切公式,结合,可以求出的值,用同角的三角函数的关系式中的平方和关系把等式变成分子、分母的齐次式形式,最后代入求值即可.【详解】..故选:B【点睛】本题考查了同角的三角函数关系式的应用,考查了二倍角的正弦公式,考查了两角和的正切公式,考查了数学运算能力.9、C【解析】

根据题目给出的定义,分析出其数列的特点为等差数列,利用等差数列求解.【详解】依题意知是公差为的等差数列,设其首项为,则,即,利用累加法可得,由于,即解得,,故.选C.【点睛】本题考查新定义数列和等差数列,属于难度题.10、B【解析】

过该圆锥顶点S的截面三角形面积最大是直角三角形,根据面积为2求出圆锥的母线长,再根据正视图求圆锥底面圆的半径,最后根据扇形面积公式求圆锥的侧面积.【详解】过该圆锥顶点S的截面三角形面积最直角三角形,设圆锥的母线长和底面圆的半径分别为,则,即,又,所以圆锥的侧面积;故选B.【点睛】本题考查三视图及圆锥有关计算,此题主要难点在于判断何时截面三角形面积最大,要结合三角形的面积公式,当,即截面是等腰直角三角时面积最大.二、填空题:本大题共6小题,每小题5分,共30分。11、9【解析】

利用“乘1法”和基本不等式即可得出.【详解】解:∵正实数a,b满足2a+b=1,∴1a+12b=(2a+b∴1a+故答案为:9【点睛】本题考查了“乘1法”和基本不等式的应用,属于基础题.12、3【解析】

利用参数方程假设C点坐标,表示出AC和BC,利用AC⋅BC=0可得到a【详解】设C∴∵∠ACB=90°∴∴当sinα+∴0<a≤3本题正确结果:3【点睛】本题考查圆中参数范围求解的问题,关键是能够利用圆的参数方程,利用向量数量积及三角函数关系求得最值.13、【解析】

分较长的两条棱所在直线相交,和较长的两条棱所在直线异面两种情况讨论,结合三棱锥的结构特征,即可求出结果.【详解】当较长的两条棱所在直线相交时,如图所示:不妨设,,,所以较长的两条棱所在直线所成角为,由勾股定理可得:,所以,所以此时较长的两条棱所在直线所成角的余弦值为;当较长的两条棱所在直线异面时,不妨设,,则,取CD的中点为O,连接OA,OB,所以CD⊥OA,CD⊥OB,而,所以OA+OB<AB,不能构成三角形。所以此情况不存在。故答案为:.【点睛】本题主要考查异面直线所成的角,熟记异面直线所成角的概念,以及三棱锥的结构特征即可,属于常考题型.14、①③【解析】

由①可知只需求点A到面的最大值对于②,求直线PB与平面PAQ所成角的最大值,可转化为到轴截面距离的最大值问题进行求解对于③④,可采用建系法进行分析【详解】选项①如图所示,当时,四棱锥体积最大,选项②中,线PB与平面PAQ所成角最大值的正弦值为,所以选项③和④,如图所示:以垂直于方向为x轴,方向为y轴,方向为z轴,其中设,.,设直线BQ与AP所成角为,,当时,取到最大值,,此时,由于,,,所以取不到答案选①、③【点睛】几何体的旋转问题需要结合动态图形和立体几何基本知识进行求解,需找临界点是正确解题的关键,遇到难以把握的最值问题,可采用建系法进行求解.15、【解析】

根据点到直线距离公式与圆的垂径定理求解.【详解】圆的圆心为,半径为,圆心到直线的距离:,由得,解得.【点睛】本题考查直线与圆的应用.此题也可联立圆与直线方程,消元后用弦长公式求解.16、【解析】

由的值,可求出的值,再判断角的范围,可判断出,进而将平方,可求出答案.【详解】由题意,,因为,所以,即;又因为,所以,即,而,由于,可知,所以,则,即.故答案为:;.【点睛】本题考查同角三角函数基本关系的应用,考查二倍角公式的应用,考查学生的计算求解能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】试题分析:可画出树枝图,得到基本事件的总数,再利用古典概型及其概率的计算公式,即可求解事件的概率.试题解析:所有可能的基本事件共有27个,如图所示.记“3个矩形颜色都不同”为事件A,由图,可知事件A的基本事件有2×3=6(个),故P(A)==.18、(1)(2)(3)或【解析】

(1)由题意,可知只要,即可使得方程有两个异号的实数解,得到答案;(2)由题意,得,则,再由的图象与轴由3个交点,列出相应的条件,即可求解.(3)由题意得,分类讨论确定函数的单调性,即可得到答案.【详解】由题可得,,与轴有一个交点;与有两个交点综上可得:实数的取值范围或【点睛】本题主要考查了函数与方程的综合应用,以及分段函数的性质的综合应用,其中解答中认真审题,合理分类讨论及利用函数的基本性质求解是解答的关键,试题综合性强,属于难题,着重考查了分析问题和解答问题的能力,以及分类讨论思想和转化思想的应用.19、(1);(2)见解析;(3)【解析】

由男教师年龄的频率分布直方图总面积为1求得答案;由男教师年龄在的频率可计算出男教师人数,从而女教师人数也可求得,于是通过分层抽样的比例关系即可得到答案;年龄在的教师中,男教师为(人),则女教师为1人,从而可计算出基本事件的概率.【详解】(1)由男教师年龄的频率分布直方图得解得(2)该校年龄在岁以下的男女教师人数相等,且共14人,年龄在岁以下的男教师共7人由(1)知,男教师年龄在的频率为男教师共有(人),女教师共有(人)按性别分层抽样,随机抽取16人参加技能比赛活动,则男教师抽取的人数为(人),女教师抽取的人数为人(3)年龄在的教师中,男教师为(人),则女教师为1人从年龄在的教师中随机抽取2人,共有10种可能情形其中至少有1名女教师的有4种情形故所求概率为【点睛】本题主要考查频率分布直方图,分层抽样,古典概率的计算,意在考查学生的计算能力和分析能力,难度不大.20、(1)或;(2)平行【解析】

(1)设出圆的圆心为,半径为,可得圆的标准方程,根据题意可得,解出即可得出圆的方程,讨论过点P的直线斜率存在与否,再根据点到直线的距离公式即可求解.(2)由题意知,直线PA,PB的倾斜角互补,分类讨论两直线的斜率存在与否,当斜率均存在时,则直线PA的方程为:,直线PB的方程为:,分别与圆C联立可得,利用斜率的计算公式与作比较即可.【详解】(1)根据题意,不妨设圆C的圆心为,半径为,则圆C,由圆C经过点,且与直线相切,则,解得,故圆C的方程为:,所以点在圆上,过点P且被圆C截得的弦长等于4的直线,当直线的斜率不存在时,直线为:,满足题意;当直线的斜率存在时,设直线的斜率为,直线方程为:,故,解得,故直线方程为:.综上所述:所求直线的方程:或.(2)由题意知,直线PA,PB的倾斜角互补,且直线PA,PB的斜率均存在,设两直线的倾斜角为和,,,因为,由正切的性质,则,不妨设直线的斜率为,则PB的斜率为,即:,则:,由,得,点的横坐标为一定是该方程的解,故可得,同理,,,,直线AB与OP平行.【点睛】本题考查了圆的标准方程,已知弦长求直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论