版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市市西初级中学2025届高一数学第二学期期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱 B.钱 C.钱 D.钱2.已知向量,,则在方向上的投影为()A. B. C. D.3.设,若关于的不等式在区间上有解,则()A. B. C. D.4.从四件正品、两件次品中随机取出两件,记“至少有一件次品”为事件,则的对立事件是()A.至多有一件次品 B.两件全是正品 C.两件全是次品 D.至多有一件正品5.在数列{an}中,an=31﹣3n,设bn=anan+1an+2(n∈N*).Tn是数列{bn}的前n项和,当Tn取得最大值时n的值为()A.11 B.10 C.9 D.86.已知数列的前项和为,若,则()A. B. C. D.7.在如图所示的茎叶图中,若甲组数据的众数为11,乙组数据的中位数为9,则()A.6 B.5 C.4 D.38.甲箱子里装有个白球和个红球,乙箱子里装有个白球和个红球.从这两个箱子里分别摸出一个球,设摸出的白球的个数为,摸出的红球的个数为,则()A.,且 B.,且C.,且 D.,且9.如图,长方体的体积为,E为棱上的点,且,三棱锥E-BCD的体积为,则=()A. B. C. D.10.甲、乙、丙、丁四名运动员参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示,从这四个人中选择一人参加奥运会射击项目比赛,最佳人选是()人数据甲乙丙丁平均数8.68.98.98.2方差3.53.52.15.6A.甲 B.乙 C.丙 D.丁二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的定义域为,则实数的取值范围为_____.12.已知是第二象限角,且,且______.13.已知向量a=1,2,b=2,-2,c=14.设数列满足,,,,______.15.中,三边所对的角分别为,若,则角______.16.在边长为2的正△ABC所在平面内,以A为圆心,为半径画弧,分别交AB,AC于D,E.若在△ABC内任丢一粒豆子,则豆子落在扇形ADE内的概率是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.18.设函数(1)若对于一切实数恒成立,求的取值范围;(2)若对于恒成立,求的取值范围.19.已知函数,的部分图像如图所示,点,,都在的图象上.(1)求的解析式;(2)当时,恒成立,求的取值范围.20.已知为平面内不共线的三点,表示的面积(1)若求;(2)若,,,证明:;(3)若,,,其中,且坐标原点恰好为的重心,判断是否为定值,若是,求出该定值;若不是,请说明理由.21.已知圆C的方程是(x-1)2+(y-1)2=4,直线l的方程为y=x+m,求当m为何值时,(1)直线平分圆;(2)直线与圆相切.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】设甲、乙、丙、丁、戊所得钱分别为,则,解得,又,则,故选B.2、D【解析】
直接利用向量的数量积和向量的投影的定义,即可求解,得到答案.【详解】由题意,向量,,则在方向上的投影为:.故选D.【点睛】本题主要考查了平面向量的数量积的应用,其中解答中熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.3、D【解析】
根据题意得不等式对应的二次函数开口向上,分别讨论三种情况即可.【详解】由题意得:当当当综上所述:,选D.【点睛】本题主要考查了含参一元二次不等式中参数的取值范围.解这类题通常分三种情况:.有时还需要结合韦达定理进行解决.4、B【解析】
根据对立事件的概念,选出正确选项.【详解】从四件正品、两件次品中随机取出两件,“至少有一件次品”的对立事件为两件全是正品.故选:B【点睛】本小题主要考查对立事件的理解,属于基础题.5、B【解析】
由已知得到等差数列的公差,且数列的前11项大于1,自第11项起小于1,由,得出从到的值都大于零,时,时,,且,而当时,,由此可得答案.【详解】由,得,等差数列的公差,由,得,则数列的前11项大于1,自第11项起小于1.由,可得从到的值都大于零,当时,时,,且,当时,,所以取得最大值时的值为11.故选:B.【点睛】本题主要考查了数列递推式,以及数列的和的最值的判定,其中解答的关键是明确数列的项的特点,着重考查了分析问题和解答问题的能力,属于中档试题.6、A【解析】
再递推一步,两个等式相减,得到一个等式,进行合理变形,可以得到一个等比数列,求出通项公式,最后求出数列的通项公式,最后求出,选出答案即可.【详解】因为,所以当时,,两式相减化简得:,而,所以数列是以为首项,为公比的等比数列,因此有,所以,故本题选A.【点睛】本题考查了已知数列递推公式求数列通项公式的问题,考查了等比数列的判断以及通项公式,正确的递推和等式的合理变形是解题的关键.7、D【解析】
由众数就是出现次数最多的数,可确定,题中中位数是中间两个数的平均数,这样可计算出.【详解】由甲组数据的众数为11,得,乙组数据中间两个数分别为6和,所以中位数是,得到,因此.故选:D.【点睛】本题考查众数和中位数的概念,掌握众数与中位数的定义是解题基础.8、D【解析】可取,;,,,,,故选D.9、D【解析】
分别求出长方体和三棱锥E-BCD的体积,即可求出答案.【详解】由题意,,,则.故选D.【点睛】本题考查了长方体与三棱锥的体积的计算,考查了学生的计算能力,属于基础题.10、C【解析】
甲,乙,丙,丁四个人中乙和丙的平均数最大且相等,甲,乙,丙,丁四个人中丙的方差最小,说明丙的成绩最稳定,得到丙是最佳人选.【详解】甲,乙,丙,丁四个人中乙和丙的平均数最大且相等,甲,乙,丙,丁四个人中丙的方差最小,说明丙的成绩最稳定,综合平均数和方差两个方面说明丙成绩即高又稳定,丙是最佳人选,故选:C.【点睛】本题考查平均数和方差的实际应用,考查数据处理能力,求解时注意方差越小数据越稳定.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据对数的真数对于0,再结合不等式即可解决.【详解】函数的定义域为等价于对于任意的实数,恒成立当时成立当时,等价于综上可得【点睛】本题主要考查了函数的定义域以及不等式恒成立的问题,函数的定义域常考的由1、,2、,3、.属于基础题.12、【解析】
利用同角三角函数的基本关系求出,然后利用诱导公式可求出的值.【详解】是第二象限角,则,由诱导公式可得.故答案为:.【点睛】本题考查利用同角三角函数的基本关系和诱导公式求值,考查计算能力,属于基础题.13、1【解析】
由两向量共线的坐标关系计算即可.【详解】由题可得2∵c//∴4λ-2=0故答案为1【点睛】本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题.14、8073【解析】
对分奇偶讨论求解即可【详解】当为偶数时,当为奇数时,故当为奇数时,故故答案为8073【点睛】本题考查数列递推关系,考查分析推理能力,对分奇偶讨论发现规律是解决本题的关键,是难题15、【解析】
利用余弦定理化简已知条件,求得的值,进而求得的大小.【详解】由得,由于,所以.【点睛】本小题主要考查余弦定理解三角形,考查特殊角的三角函数值,属于基础题.16、【解析】
由三角形ABC的边长为2不难求出三角形ABC的面积,又由扇形的半径为,也可以求出扇形的面积,代入几何概型的计算公式即可求出答案.【详解】由题意知,在△ABC中,BC边上的高AO正好为,∴圆与边CB相切,如图.S扇形=×××=,S△ABC=×2×2×=,∴P==.【点睛】本题考查面积型几何概型概率的求法,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)an=3n–4,(3)Sn=n3–8n,最小值为–1.【解析】分析:(1)根据等差数列前n项和公式,求出公差,再代入等差数列通项公式得结果,(3)根据等差数列前n项和公式得的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{an}的公差为d,由题意得3a1+3d=–3.由a1=–7得d=3.所以{an}的通项公式为an=3n–4.(3)由(1)得Sn=n3–8n=(n–4)3–1.所以当n=4时,Sn取得最小值,最小值为–1.点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.18、(1)(2)【解析】
(1)由不等式恒成立,结合二次函数的性质,分类讨论,即可求解;(2)要使对于恒成立,整理得只需恒成立,结合基本不等式求得最值,即可求解.【详解】(1)由题意,要使不等式恒成立,①当时,显然成立,所以时,不等式恒成立;②当时,只需,解得,综上所述,实数的取值范围为.(2)要使对于恒成立,只需恒成立,只需,又因为,只需,令,则只需即可因为,当且仅当,即时等式成立;因为,所以,所以.【点睛】本题主要考查了含参数的不等式的恒成立问题的求解,其中解答中把不等式的恒成立问题转化为函数的最值问题是解答的关键,着重考查了分类讨论思想,以及转化思想的应用,属于基础题.19、(1);(2)【解析】
(1)由三角函数图像,求出即可;(2)求出函数的值域,再列不等式组求解即可.【详解】解:(1)由的图象可知,则,因为,,所以,故.因为在函数的图象上,所以,所以,即,因为,所以.因为点在函数的图象上,所以,解得,故.(2)因为,所以,所以,则.因为,所以,所以,解得.故的取值范围为.【点睛】本题考查了利用三角函数图像求解析式,重点考查了三角函数值域的求法,属中档题.20、(1);(2)详见解析;(3)是定值,值为,理由见解析.【解析】
(1)已知三点坐标,则可以求出三边长度及对应向量,由向量数量积公式可以求出夹角余弦值,从而算出正弦值,利用面积公式完成作答;(2)和(1)的方法一样,唯独不同在于(1)是具体值,而(2)中是参数,我们可以把参数当做整体(视为已知)能处理;(3)由恰好为的正心可以获取,而可以借助(2)的公式直接运用,本题也就完成作答.【详解】(1)因为,所以,,所以因为,所以,所以(2)因为,所以所以因为所以所以所以;(3)因为为的重心,所以由(1)可知又因为为的重心,所以,平方相加得:,即,所以所以,所以是定值,值为【点睛】已知三角形三点,去探究三角形面积问题,通过向量数量积为载体,算出相对应边所在向量的模长、夹角余弦值,进一步算出正弦值,从而算出面积,这三问存在层层递进的过程,从特殊到一般慢慢设问,非常好的一个探究性习题.21、(1)m=0;(2)m=±2.【解析】试题分析:(1)直线平分圆,即直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二手摩托车买卖2024年法律文件3篇
- 2025版土地租赁期满及转让中介服务协议3篇
- 2025年度个人心理咨询与治疗服务合同范本3篇
- 二零二五年度幕墙工程劳务分包合同售后服务及质量保证3篇
- 个人与个人之间股权转让合同(2024版)5篇
- 二零二五年度厂房产权分割与共有权转让合同3篇
- 二零二五版木材行业安全教育培训服务合同4篇
- 二零二五年度储煤场租赁及煤炭供应链金融服务合同3篇
- 2024版谷颖的离婚协议书c
- 2025年度智能厨房设备升级采购与安装服务合同2篇
- 2024年甘肃省武威市、嘉峪关市、临夏州中考英语真题
- DL-T573-2021电力变压器检修导则
- 绘本《图书馆狮子》原文
- 安全使用公共WiFi网络的方法
- 2023年管理学原理考试题库附答案
- 【可行性报告】2023年电动自行车相关项目可行性研究报告
- 欧洲食品与饮料行业数据与趋势
- 放疗科室规章制度(二篇)
- 中高职贯通培养三二分段(中职阶段)新能源汽车检测与维修专业课程体系
- 浙江省安全员C证考试题库及答案(推荐)
- 目视讲义.的知识
评论
0/150
提交评论