版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市实验高级中学2025届数学高一下期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在△ABC中,角所对的边分别为,且则最大角为()A. B. C. D.2.已知两个正数a,b满足,则的最小值是(
)A.2 B.3 C.4 D.53.若,则下列不等式中不正确的是()A. B. C. D.4.已知某路段最高限速60km/h,电子监控测得连续6辆汽车的速度用茎叶图表示如图所示(单位:km/h),若从中任抽取2辆汽车,则恰好有1辆汽车超速的概率为()A. B. C. D.5.对一切,恒成立,则实数的取值范围是()A. B.C. D.6.在各项均为正数的数列中,对任意都有.若,则等于()A.256 B.510 C.512 D.10247.若,,,点C在AB上,且,设,则的值为()A. B. C. D.8.某兴趣小组合作制作了一个手工制品,并将其绘制成如图所示的三视图,其中侧视图中的圆的半径为3,则制作该手工制品表面积为()A. B. C. D.9.已知是平面内两个互相垂直的向量,且,若向量满足,则的最大值是()A.1 B. C.3 D.10.已知函数(其中为自然对数的底数),则的大致图象为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若数列{an}满足a1=2,a12.下列说法中:①若,满足,则的最大值为;②若,则函数的最小值为③若,满足,则的最小值为④函数的最小值为正确的有__________.(把你认为正确的序号全部写上)13.记,则函数的最小值为__________.14.已知直线,圆O:上到直线的距离等于2的点有________个。15.某几何体的三视图如图所示,则该几何体的体积为__________.16.已知数列中,其中,,那么________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点,圆.(1)求过点且与圆相切的直线方程;(2)若直线与圆相交于,两点,且弦的长为,求实数的值.18.设a为实数,函数,(1)若,求不等式的解集;(2)是否存在实数a,使得函数在区间上既有最大值又有最小值?若存在,求出实数a的取值范围;若不存在,请说明理由;(3)写出函数在R上的零点个数(不必写出过程).19.已知圆与圆:关于直线对称.(1)求圆的标准方程;(2)已知点,若与直线垂直的直线与圆交于不同两点、,且是钝角,求直线在轴上的截距的取值范围.20.对于函数f1(x), f2(x), h(x),如果存在实数(1)下面给出两组函数,h(x)是否分别为f1第一组:f1第二组:;(2)设f1x=log2x,f2x21.如图,在三棱柱中,是边长为4的正三角形,侧面是矩形,分别是线段的中点.(1)求证:平面;(2)若平面平面,,求三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据正弦定理可得三边的比例关系;由大边对大角可知最大,利用余弦定理求得余弦值,从而求得角的大小.【详解】由正弦定理可得:设,,最大为最大角本题正确选项:【点睛】本题考查正弦定理、余弦定理的应用,涉及到三角形中大边对大角的关系,属于基础题.2、D【解析】
根据题意,分析可得,对其变形可得,由基本不等式分析可得答案.【详解】解:根据题意,正数,满足,则;即的最小值是;故选:.【点睛】本题考查基本不等式的性质以及应用,关键是掌握基本不等式应用的条件.3、C【解析】
,可得,则根据不等式的性质逐一分析选项,A:,,所以成立;B:,则,根据基本不等式以及等号成立的条件则可判断;C:且,根据可乘性可知结果;D:,根据乘方性可判断结果.【详解】A:由题意,不等式,可得,则,,所以成立,所以A是正确的;B:由,则,所以,因为,所以等号不成立,所以成立,所以B是正确的;C:由且,根据不等式的性质,可得,所以C不正确;D:由,可得,所以D是正确的,故选:C.【点睛】本题考查不等式的性质,不等式等号成立的条件,熟记不等式的性质是解题的关键,属于基础题.4、A【解析】
求出基本事件的总数,以及满足题意的基本事件数目,即可求解概率.【详解】解:由题意任抽取2辆汽车,其速度分别为:,共15个基本事件,其中恰好有1辆汽车超速的有,,共8个基本事件,则恰好有1辆汽车超速的概率为:,故选:A.【点睛】本题考查古典概型的概率的求法,属于基本知识的考查.5、B【解析】
先求得的取值范围,根据恒成立问题的求解策略,将原不等式转化为,再解一元二次不等式求得的取值范围.【详解】解:对一切,恒成立,转化为:的最大值,又知,的最大值为;所以,解得或.故选B.【点睛】本小题主要考查恒成立问题的求解策略,考查三角函数求最值的方法,考查一元二次不等式的解法,考查化归与转化的数学思想方法,属于中档题.6、C【解析】
因为,所以,则因为数列的各项均为正数,所以所以,故选C7、B【解析】
利用向量的数量积运算即可算出.【详解】解:,,又在上,故选:【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.8、D【解析】
由三视图可知,得到该几何体是由两个圆锥组成的组合体,根据几何体的表面积公式,即可求解.【详解】由三视图可知,该几何体是由两个圆锥组成的组合体,其中圆锥的底面半径为3,高为4,所以几何体的表面为.选D.【点睛】本题考查了几何体的三视图及表面积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.9、D【解析】
设出平面向量的夹角,求出的夹角,最后利用平面向量数量积的运算公式进行化简等式,最后利用辅助角公式求出的最大值.【详解】设平面向量的夹角为,因为是平面内两个互相垂直的向量,所以平面向量的夹角为,因为是平面内两个互相垂直的向量,所以.,,,其中,显然当时,有最大值,即.故选:D【点睛】本题考查平面向量数量积的性质及运算,属于中档题.10、D【解析】令,,所以函数在上单调递减,在上单调递增,又令,所以有两个零点,因为,,所以,且当时,,,当时,,,当时,,,选项C满足条件.故选C.点睛:本题考查函数的解析式和图象的关系、利用导数研究函数的单调性;已知函数的解析式识别函数图象是高考常见题型,往往从定义域、奇偶性(对称性)、单调性、最值及特殊点的符号进行验证,逐一验证进行排除.二、填空题:本大题共6小题,每小题5分,共30分。11、2×【解析】
判断数列是等比数列,然后求出通项公式.【详解】数列{an}中,a可得数列是等比数列,等比为3,an故答案为:2×3【点睛】本题考查等比数列的判断以及通项公式的求法,考查计算能力.12、③④【解析】
①令,得出,再利用双勾函数的单调性判断该命题的正误;②将函数解析式变形为,利用基本不等式判断该命题的正误;③由得出,得出,利用基本不等式可判断该命题的正误;④将代数式与代数式相乘,展开后利用基本不等式可求出的最小值,进而判断出该命题的正误。【详解】①由得,则,则,设,则,则,则上减函数,则上为增函数,则时,取得最小值,当时,,故的最大值为,错误;②若,则函数,则,即函数的最大值为,无最小值,故错误;③若,满足,则,则,由,得,则,当且仅当,即得,即时取等号,即的最小值为,故③正确;④,当且仅当,即,即时,取等号,即函数的最小值为,故④正确,故答案为:③④。【点睛】本题考查利用基本不等式来判断命题的正误,利用基本不等式需注意满足“一正、二定、三相等”这三个条件,同时注意结合双勾函数单调性来考查,属于中等题。13、4【解析】
利用求解.【详解】,当时,等号成立.故答案为:4【点睛】本题主要考查绝对值不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.14、3;【解析】
根据圆心到直线的距离和半径之间的长度关系,可通过图形确定所求点的个数.【详解】由圆的方程可知,圆心坐标为,半径圆心到直线的距离:如上图所示,此时,则到直线距离为的点有:,共个本题正确结果:【点睛】本题考查根据圆与直线的位置关系求解圆上点到直线距离为定值的点的个数,关键是能够根据圆心到直线的距离确定直线的大致位置,从而根据半径长度确定点的个数.15、【解析】由三视图知该几何体是一个半圆锥挖掉一个三棱锥后剩余的部分,如图所示,所以其体积为.点睛:求多面体的外接球的面积和体积问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心,本题就是第三种方法.16、1【解析】
由已知数列递推式可得数列是以为首项,以为公比的等比数列,然后利用等比数列的通项公式求解.【详解】由,得,,则数列是以为首项,以为公比的等比数列,.故答案为:1.【点睛】本题考查数列的递推关系、等比数列通项公式,考查运算求解能力,特别是对复杂式子的理解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】
(1)考虑切线的斜率是否存在,结合直线与圆相切的的条件d=r,直接求解圆的切线方程即可.(2)利用圆的圆心距、半径及半弦长的关系,列出方程,求解a即可.【详解】(1)由圆的方程得到圆心,半径.当直线斜率不存在时,直线与圆显然相切;当直线斜率存在时,设所求直线方程为,即,由题意得:,解得,∴方程为,即.故过点且与圆相切的直线方程为或.(2)∵弦长为,半径为2.圆心到直线的距离,∴,解得.【点睛】本题考查直线与圆的位置关系的综合应用,考查切线方程的求法,考查了垂径定理的应用,考查计算能力.18、(1)(2)不存在这样的实数,理由见解析(3)见解析【解析】
(1)代入的值,通过讨论的范围,求出不等式的解集即可;(2)通过讨论的范围,求出函数的单调区间,再求出函数的最值,得到关于的不等式组,解出并判断即可;(3)通过讨论的范围,判断函数的零点个数即可【详解】(1)当时,,则当时,,解得或,故;当时,,解集为,综上,的解集为(2),显然,,①当时,则在上单调递增,在上单调递减,在上单调递增,因为函数在上既有最大值又有最小值,所以,,则,即,解得,故不存在这样的实数;②当时,则在上单调递增,在上单调递减,在上单调递增,因为函数在上既有最大值又有最小值,故,,则,即,解得,故不存在这样的实数;③当时,则为上的递增函数,故函数在上不存在最大值和最小值,综上,不存在这样的实数(3)当或时,函数的零点个数为1;当或时,函数的零点个数为2;当时,函数的零点个数为3【点睛】本题考查分段函数的应用,考查利用函数的单调性求最值,考查函数的零点个数,着重考查分类讨论思想19、(1);(2)【解析】
(1)根据两圆对称,直径一样,只需圆心对称即可得圆C的标准方程;(2)设直线l的方程为y=﹣x+m与圆C联立方程组,利用韦达定理,设而不求的思想即可求解b范围,即截距的取值范围.【详解】(1)圆的圆心坐标为,半径为2设圆的圆心坐标为,由题意可知解得:由对称性质可得,圆的半径为2,所以圆的标准方程为:(2)设直线的方程为,联立得:,设直线与圆的交点,,由,得,(1)因为为钝角,所以,且直线不过点即满足,且又,,所以(2)由(1)式(2)式可得,满足,即,因为,所以直线在轴上的截距的取值范围是【点睛】本题考查直线与圆的位置关系,是中档题,解题时要认真审题,注意韦达定理的合理运用.20、(1)见解析;(2)(-∞,-5)【解析】
(1)①设asinx+bcos取a=12, b=②设a(x2-x)+b(则a+b=1-a+b=-1b=1,该方程组无解.所以h(x)不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论