版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市长宁区、嘉定区高一数学第二学期期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若线性方程组的增广矩阵是5b1102bA.1 B.2 C.3 D.42.已知点,,则直线的斜率是()A. B. C.5 D.13.已知直角三角形ABC,斜边,D为AB边上的一点,,,则CD的长为()A. B. C.2 D.34.已知直线和,若,则实数的值为A.1或 B.或 C.2或 D.或5.在一段时间内,某种商品的价格(元)和销售量(件)之间的一组数据如下表:价格(元)4681012销售量(件)358910若与呈线性相关关系,且解得回归直线的斜率,则的值为()A.0.2 B.-0.7 C.-0.2 D.0.76.如图,函数与坐标轴的三个交点P,Q,R满足,,M为QR的中点,,则A的值为()A. B. C. D.7.要从已编号(1~50)的50枚最新研制的某型导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,328.已知不等式的解集为,则不等式的解集为()A. B.C. D.9.下列命题正确的是()A.若,则 B.若,则C.若,,则 D.若,,则10.如右图所示,直线的斜率分别为则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的图像可由函数的图像至少向右平移________个单位长度得到.12.的化简结果是_________.13.设,过定点A的动直线和过定点B的动直线交于点,则的最大值是.14.已知变量和线性相关,其一组观测数据为,由最小二乘法求得回归直线方程为.若已知,则______.15.已知函数的图象关于点对称,记在区间的最大值为,且在()上单调递增,则实数的最小值是__________.16.无限循环小数化成最简分数为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,平面,,,,点Q在棱AB上.(1)证明:平面.(2)若三棱锥的体积为,求点B到平面PDQ的距离.18.某地合作农场的果园进入盛果期,果农利用互联网电商渠道销售苹果,苹果单果直径不同则单价不同,为了更好的销售,现从该合作农场果园的苹果树上随机摘下了50个苹果测量其直径,经统计,其单果直径分布在区间内(单位:),统计的茎叶图如图所示:(Ⅰ)按分层抽样的方法从单果直径落在,的苹果中随机抽取6个,则从,的苹果中各抽取几个?(Ⅱ)从(Ⅰ)中选出的6个苹果中随机抽取2个,求这两个苹果单果直径均在内的概率;(Ⅲ)以此茎叶图中单果直径出现的频率代表概率,若该合作农场的果园有20万个苹果约5万千克待出售,某电商提出两种收购方案:方案:所有苹果均以5.5元/千克收购;方案:按苹果单果直径大小分3类装箱收购,每箱装25个苹果,定价收购方式为:单果直径在内按35元/箱收购,在内按45元/箱收购,在内按55元/箱收购.包装箱与分拣装箱费用为5元/箱(该费用由合作农场承担).请你通过计算为该合作农场推荐收益最好的方案.19.已知等比数列的公比,前项和为,且.(1)求数列的通项公式;(2)设,求数列的前项和.20.已知以点为圆心的圆C被直线截得的弦长为.(1)求圆C的标准方程:(2)求过与圆C相切的直线方程:(3)若Q是直线上的动点,QR,QS分别切圆C于R,S两点.试问:直线RS是否恒过定点?若是,求出恒过点坐标:若不是,说明理由.21.已知.(1)设,求满足的实数的值;(2)若为上的奇函数,试求函数的反函数.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由题意得5×3421+【详解】由题意得5×3421+解得b1则b2【点睛】本题主要考查了线性方程组的解法,以及增广矩阵的概念,考查运算能力,属于中档题.2、D【解析】
根据直线的斜率公式,准确计算,即可求解,得到答案.【详解】由题意,根据直线的斜率公式,可得直线的斜率,故选D.【点睛】本题主要考查了直线的斜率公式的应用,其中解答中熟记直线的斜率公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.3、A【解析】
设,利用勾股定理求出的值即得解.【详解】如图,由于,所以设,所以所以.故选:A【点睛】本题主要考查解直角三角形,意在考查学生对这些知识的理解掌握水平,属于基础题.4、C【解析】
利用直线与直线垂直的性质直接求解.【详解】∵直线和,若,∴,得,解得或,∴实数的值为或.故选:C.【点睛】本题考查直线与直线垂直的性质等基础知识,考查运算求解能力,属于基础题.5、C【解析】
由题意利用线性回归方程的性质计算可得的值.【详解】由于,,由于线性回归方程过样本中心点,故:,据此可得:.故选C.【点睛】本题主要考查线性回归方程的性质及其应用,属于中等题.6、D【解析】
用周期表示出点坐标,从而又可得点坐标,再求出点坐标后利用求得,得.【详解】记函数的周期,则,因为,∴,是中点,则,∴,解得,∴,由得,∵,∴,,,∴,故选:D.【点睛】本题考查求三角函数的解析式,掌握正弦函数的图象与性质是解题关键.7、B【解析】
对导弹进行平均分组,根据系统抽样的基本原则可得结果.【详解】将50枚导弹平均分为5组,可知每组50÷5=10枚导弹即分组为:1∼10,11∼20,21∼30,31∼40,41∼50按照系统抽样原则可知每组抽取1枚,且编号成公差为10的等差数列由此可确定B正确本题正确选项:B【点睛】本题考查抽样方法中的系统抽样,属于基础题.8、A【解析】
根据一元二次不等式的解集与一元二次方程根的关系,结合韦达定理可构造方程求得;利用一元二次不等式的解法可求得结果.【详解】的解集为和是方程的两根,且,解得:解得:,即不等式的解集为故选:【点睛】本题考查一元二次不等式的解法、一元二次不等式的解集与一元二次方程根的关系等知识的应用;关键是能够通过一元二次不等式的解集确定一元二次方程的根,进而利用韦达定理构造方程求得变量.9、C【解析】
对每一个选项进行判断,选出正确的答案.【详解】A.若,则,取不成立B.若,则,取不成立C.若,,则,正确D.若,,则,取不成立故答案选C【点睛】本题考查了不等式的性质,找出反例是解题的关键.10、C【解析】试题分析:由图可知,,所以,故选C.考点:直线的斜率.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:因为,所以函数的的图像可由函数的图像至少向右平移个单位长度得到.【考点】三角函数图像的平移变换、两角差的正弦公式【误区警示】在进行三角函数图像变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母而言,即图像变换要看“变量”变化多少,而不是“角”变化多少.12、【解析】原式,因为,所以,且,所以原式.13、5【解析】试题分析:易得.设,则消去得:,所以点P在以AB为直径的圆上,,所以,.法二、因为两直线的斜率互为负倒数,所以,点P的轨迹是以AB为直径的圆.以下同法一.【考点定位】1、直线与圆;2、重要不等式.14、355【解析】
根据回归直线必过样本点的中心,根据横坐标结合回归方程求出纵坐标即可得解.【详解】由题:,回归直线方程为,所以,.故答案为:355【点睛】此题考查根据回归直线方程求样本点的中心的纵坐标,关键在于掌握回归直线必过样本点的中心,根据平均数求解.15、【解析】,所以,又,得,所以,且求得,又,得单调递增区间为,由题意,当时,。点睛:本题考查三角函数的化简及性质应用。本题首先考查三角函数的辅助角公式应用,并结合对称中心的性质,得到函数解析式。然后考察三角函数的单调性,利用整体思想求出单调区间,求得答案。16、【解析】
利用无穷等比数列求和的方法即可.【详解】.故答案为:【点睛】本题主要考查了无穷等比数列的求和问题,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】
(1)线面垂直只需证明PD和平面内两条相交直线垂直即可,易得,另外中已知三边长通过勾股定理易得,所以平面.(2)点B到平面PDQ的距离通过求得三棱锥的体积和面积即可,而,带入数据求解即可.【详解】(1)证明:在中,,,所以.所以是直角三角形,且,即.因为平面PAD,平面PAD,所以.因为,所以平面ABCD.(2)解:设.因为.,所以的面积为.因为平面ABCD,所以三棱锥的体积为,解得.因为,所以,所以的面积为.则三棱锥的体积为.在中,,,,则.设点B到平面PDQ的距离为h,则,解得,即点B到平面PDQ的距离为.【点睛】此题考察立体几何的证明,线面垂直只需证明线与平面内的两条相交直线分别垂直即可,第二问考察了三棱锥等体积法,通过变化顶点和底面进行转化,属于中档题目.18、(Ⅰ)4个;(Ⅱ);(Ⅲ)方案是【解析】
(Ⅰ)单果直径落在,,,的苹果个数分别为6,12,分层抽样的方法从单果直径落在,,,的苹果中随机抽取6个,单果直径落在,,,的苹果分别抽取2个和4个;(Ⅱ)从这6个苹果中随机抽取2个,基本事件总数,这两个苹果单果直径均在,内包含的基本事件个数,由此能求出这两个苹果单果直径均在,内的概率;(Ⅲ)分别求出按方案与方案该合作农场收益,比较大小得结论.【详解】(Ⅰ)由茎叶图可知,单果直径落在,的苹果分别为6个,12个,依题意知抽样比为,所以单果直径落在的苹果抽取个数为个,单果直径落在的苹果抽取个数为个(Ⅱ)记单果直径落在的苹果为,,记单果直径落在的苹果为,若从这6个苹果中随机抽取2个,则所有可能结果为:,,,,,,,,,,,,,,,即基本事件的总数为15个.这两个苹果单果直径均落在内包含的基本事件个数为6个,所以这两个苹果单果直径均落在内的概率为.(Ⅲ)按方案:该合作农场收益为:(万元);按方案:依题意可知合作农场的果园共有万箱,即8000箱苹果,则该合作农场收益为:元,即为31.36万元因为,所以为该合作农场推荐收益最好的方案是.【点睛】本题考查概率、最佳方案的确定,考查茎叶图等基础知识,考查运算求解能力,是中档题.19、(1).(2)【解析】
(1)根据条件列出等式,求解公比后即可求解出通项公式;(2)错位相减法求和,注意对于“错位”的理解.【详解】解:(1)由,得,则∴,∴数列的通项公式为.(2)由,∴,①,②①②,得,∴.【点睛】本题考查等比数列通项和求和,难度较易.对于等差乘以等比的形式的数列,求和注意选用错位相减法.20、(1)(2)或(3)直线RS恒过定点【解析】
(1)由弦长可得,进而求解即可;(2)分别讨论直线的斜率存在与不存在的情况,再利用圆心到直线距离等于半径求解即可;(3)由QR,QS分别切圆C于R,S两点,可知,在以为直径的圆上,设为,则可得到以为直径的圆的方程,与圆联立可得,由求解即可【详解】(1)由题,设点到直线的距离为,则,则弦长,解得,所以圆的标准方程为:(2)当切线斜率不存在时,直线方程为,圆心到直线距离为2,故此时相切;当切线斜率存在时,设切线方程为,即,则,解得,则直线方程为,即,综上,切线方程为或(3)直线RS恒过定点,由题,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度商铺租赁及租赁期限变更及租金调整合同
- 2025年度畜禽养殖基地土地租赁合同
- 2025年度厨师餐饮企业厨师团队选拔与培训合同
- 二零二五年度土地使用权出让合同主体变更及土地整治项目协议
- 二零二五年度土地承包经营权流转与农村土地经营权流转法律咨询合同
- 2025年度厨师餐饮企业员工福利保障合同
- 2025年度国际贸易矿产资源勘探开发合同范例
- 湖南省永州市道县2024-2025学年八年级上学期期末考试地理试卷(含答案)
- 广东省揭阳市榕城区2024-2025年第一学期期终质量检测小学一年级数学科试卷(含答案)
- 统计知识培训课件
- 社会学概论期末复习题及答案
- 物料吊笼安全技术标准
- 强基计划模拟卷化学
- 2022年江苏省南京市中考历史试题(含答案)
- 商务沟通第二版第6章管理沟通
- 培训课件-核电质保要求
- 过敏原检测方法分析
- TSG_R0004-2009固定式压力容器安全技术监察规程
- 室外给水排水和燃气热力工程抗震设计规范
- 《三国演义》整本书阅读任务单
- 大型平板车安全管理规定.doc
评论
0/150
提交评论