版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.3函数的基本性质观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:
1、观察这三个图象,你能说出图象的特征吗?2、随x的增大,y的值有什么变化?1.3.1单调性与最大(小)值请观察函数y=x2与y=x3图象,回答下列问题:1、当x∈[0,+∞),x增大时,图(1)中的y值
;图(2)中的y值
。2、当x∈(-∞,0),x增大时,图(1)中的y值
;图(2)中的y值
。增大增大增大减小3、分别指出图(1)、图(2)中,当x∈[0,+∞)和x∈(-∞,0)时,函数图象是上升的还是下降的?4、通过前面的讨论,你发现了什么?结论:若一个函数在某个区间内图象是上升的,则函数值y随x的增大而增大,反之亦真;若一个函数在某个区间内图象是下降的,则函数值y随x的增大而减小,反之亦真。观察某城市一天24小时气温变化图.θ=f(t),t∈[0,24]问题:如何描述气温θ随时间t的变化情况?(t1,θ1)(t2,θ2)t1t2问题:在区间[4,14]上,如何用数学符号语言来刻画“θ随t的增大而增大”这一特征?
如图,研究函数θ=f(t),t∈[0,24]的图象在区间[4,14]上的变化情况.在[4,14]上,取几个不同的输入值,例如t1=5,t2=6,t3=8,t4=10,得到相对应的输出值θ1,θ2,θ3,θ4.在t1<t2<t3<t4时,有θ1<θ2<θ3<θ4,所以在[4,14]上,θ随t的增大而增大.tθO取区间内n个输入值t1,t2,t3,…,tn,得到相对应的输出值θ1,θ2,θ3,…,θn,在t1<t2<t3<…<tn时,有θ1<θ2<θ3<…<θn,所以在区间[4,14]上,θ随t的增大而增大.在[4,14]上任取两个值t1,t2,只要t1<t2,就有θ1<θ2,就可以说在区间[4,14]上,θ随t的增大而增大.问题:设函数y=f(x)的定义域为A,区间I
A,在区间I上,y随x的增大而增大,该如何用数学符号语言来刻画呢?
在[4,14]上内任取两个值t1,t2,只要t1<t2,就有θ1<θ2,就可以说在区间[4,14]上,θ随t的增大而增大.函数y=f(x)的定义域为A,区间I
A,如果对于区间I内的任意两个值x1,x2,
当x1<x2时,都有f(x1)<f(x2),那么就说函数y=f(x)在区间I上是单调增函数,区间I称为函数y=f(x)的单调增区间.问题:
如何定义单调减函数和单调减区间呢?
函数y=f(x)的定义域为A,区间I
A,如果对于区间I内的任意两个值x1,x2当x1<x2时,都有f(x1)>f(x2),那么就说函数y=f(x)在区间I上是单调减函数,区间I称为函数y=f(x)的单调减区间.1.函数y=f(x),x∈[0,3]的图象如图所示.Oxy123区间[0,3]是该函数的单调增区间吗?概念辨析2.对于二次函数f(x)=x2,因为-1,2∈(-∞,+∞),当-1<2时,f(-1)<f(2),所以函数f(x)=x2在区间(-∞,+∞)上是单调增函数.
3.已知函数y=f(x)的定义域为[0,+∞),若对于任意的x2>0,都有f(x2)<f(0),则函数y=f(x)在区间[0,+∞)上是单调减函数.yxOx2f(x2)判断yx10x2xf(x1)f(x2)设函数f(x)的定义域为I:如果对于属于定义域I内某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数一、增函数
如果函数y=f(x)在某个区间是增函数或减函数,那么就说函数y=f(x)在这个区间具有(严格的)单调性,这一区间叫做y=f(x)的单调区间.yf(x1)f(x2)x10x2x设函数f(x)的定义域为I:如果对于属于定义域I内某个区间上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数二、减函数三、单调性与单调区间请问:在单调区间上增函数的图象是__________,减函数的图象是__________.(填“上升的”或“下降的”)上升的下降的想一想:如何从一个函数的图象来判断这个函数在定义域内的某个单调区间上是增函数还是减函数?
如果这个函数在某个单调区间上的图象是上升的,那么它在这个单调区间上就是增函数;如果图象是下降的,那么它在这个单调区间上就是减函数。1、增函数、减函数的三个特征:(1)局部性:也就是说它肯定有一个区间。区间可以是整个定义域,也可以是其真子集,因此,我们说增函数、减函数时,必须指明它所在的区间。如y=x+1(X∈Z)不具有单调性(2)任意性:它的取值是在区间上的任意两个自变量,决不能理解为很多或无穷多个值。(3)一致性增函数:f()f()减函数:f()>f()。
<<<例1.下图是定义在闭区间[-5,5]上的函数y=f(x)的图象,根据图象说出y=f(x)的单调区间,以及在每个单调区间上,y=f(x)是增函数还是减函数?解:函数y=f(x)的单调区间有[-5,-2),[-2,1),[1,3),[3,5],其中y=f(x)在区间[-5,-2),[1,3)上是减函数,在区间[-2,1),[3,5]上是增函数.例2:物理学中的玻意耳定律(k为正常数)告诉我们,对于一定量的气体,当其体积V减小时,压强p将增大。试用函数的单调性证明之。Vkp=分析:按题意,只要证明函数在区间上是减函数即可。例2、物理学中的玻意耳定律告诉我们,对于一定量的气体,当其体积V减小时,压强p将增大。试用函数的单调性证明之。证明:根据单调性的定义,设V1,V2是定义域(0,+∞)上的任意两个实数,且V1<V2,则由V1,V2∈
(0,+∞)且V1<V2,得V1V2>0,V2-V1>0又k>0,于是
所以,函数是减函数.也就是说,当体积V减少时,压强p将增大.取值定号变形作差结论探究:画出反比例函数的图象。(1)这个函数的定义域I是什么?(2)它在定义域I上的单调性是怎样的?证明你的结论。
通过观察图象,先对函数是否具有某种性质做出猜想,然后通过逻辑推理,证明这种猜想的正确性,是研究函数性质的一种常用方法。证明:设x1,x2∈(0,+∞),且x1<x2,则1-1-1Oxy1f(x)在定义域
上是减函数吗?
取x1=-1,x2=1
f(-1)=-1
f(1)=1
-1<1
f(-1)<f(1)用定义证明函数的单调性的步骤:(1).设x1<x2,并是某个区间上任意二值;(2).作差f(x1)-f(x2);(3).判断f(x1)-f(x2)的符号:(4).作结论.①分解因式,得出因式(x1-x2②配成非负实数和。方法小结③有理化。
图象上有一个最低点(0,0),即对于任意的,都有图象没有最低点。画出下列函数的草图,并根据图象解答下列问题:
1说出y=f(x)的单调区间,以及在各单调区间上的单调性;2指出图象的最高点或最低点,并说明它能体现函数的什么特征?
(1)(2)
图象上有一个最低点(0,0),即对于任意的,都有图象没有最低点。课堂互动讲练
例1求证:函数f(x)=--1在区间(-∞,0)上是单调增函数.【思路点拨】利用定义进行判断,主要判定f(x2)-f(x1)的正负.
证明:任取x1<x2<0,则f(x2)-f(x1)=(--1)-(--1)=-=.因为x1<x2<0,所以x1x2>0,x2-x1>0,所以>0,即f(x2)-f(x1)>0,所以f(x2)>f(x1).故f(x)在(-∞,0)上是单调增函数.【规律小结】用定义证明函数单调性的一般步骤:(1)取值:即设x1,x2是该区间内的任意两个值,且x1<x2.(2)作差:即f(x2)-f(x1)(或f(x1)-f(x2)),并通过通分、配方、因式分解等方法,向有利于判断差的符号的方向变形.(3)定号:根据给定的区间和x2-x1的符号,确定差f(x2)-f(x1)(或f(x1)-f(x2))的符号.当符号不确定时,可以进行分类讨论.(4)判断:根据定义得出结论.课堂互动讲练3.函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数关于对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数关于对称y轴原点3.奇偶函数的定义域有何特点?【思考·提示】若函数f(x)具有奇偶性,则f(x)的定义域关于原点对称.反之,若函数的定义域不关于原点对称,则该函数无奇偶性.2.理解函数的奇偶性应注意的问题(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.规律方法总结课堂互动讲练例2【思路点拨】可从定义域入手,在定义域关于原点对称情况下,考查f(-x)与f(x)的关系.课堂互动讲练故f(x)为非奇非偶函数.课堂互动讲练综上,对x∈(-∞,0)∪(0,+∞),都有f(-x)=-f(x).∴f(x)为奇函数.(4)易知f(x)的定义域是(-1,0)∪(0,1),∴f(x)是奇函数.(3)当x<0时,-x>0,则:f(-x)=-(-x)2-x=-(x2+x)=-f(x);当x>0时,-x<0,则:f(-x)=(-x)2-x=x2-x=-f(x).【说明】对于(1)的结论不能只说奇函数或偶函数.课堂互动讲练点此播放讲课视频2.理解函数的奇偶性应注意的问题(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要但不充分条件.f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.规律方法总结课堂练习1、函数f(x)=x2+4ax+2在区间(-∞,6]内递减,则a的取值范围是()A、a≥3B、a≤3C、a≥-3D、a≤-3D2、在已知函数f(x)=4x2-mx+1,在(-∞,-2]上递减,在[-2,+∞)上递增,则f(x)在[1,2]上的值域____________.[21,39]证明:函数f(x)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 船舶英语课程设计
- 液压课程设计集成块
- 统计表微课程设计
- 箱盖机械制造课程设计
- 背景图高级课程设计
- 物体旋转课程设计思路
- 体育行业市场拓展总结
- 应急科护士工作总结
- 电气技术实践课程设计
- 餐饮卫生的关键控制点
- 国有企业考勤制度管理办法
- 人教版六年级上册道德与法治知识点
- 期货从业资格(期货基础知识)历年真题试卷汇编27
- 人工智能学习通超星期末考试答案章节答案2024年
- 北师大版(2019)必修第二册Unit 5 Humans and nature Lesson 3 Race to the pole教学设计
- 《毛概》23版学习通超星期末考试答案章节答案2024年
- 2024CSCO胰腺癌诊疗指南解读
- 窗帘采购投标方案(技术方案)
- 电力安全工作规程考试试题(答案)
- 2024-2030年串番茄行业市场发展分析及前景趋势与投资研究报告
- 城市燃气管网改造合同
评论
0/150
提交评论