




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年海南省东方市琼西中学高一数学第二学期期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知实数满足,则的最大值为()A.8 B.2 C.4 D.62.如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为()A.akm B.akmC.akm D.2akm3.《趣味数学·屠夫列传》中有如下问题:“戴氏善屠,日益功倍。初日屠五两,今三十日屠讫,问共屠几何?”其意思为:“有一个姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5两肉,共屠了30天,问一共屠了多少两肉?”()A. B. C. D.4.已知在中,,那么的值为()A. B. C. D.5.己知,,若轴上方的点满足对任意,恒有成立,则点纵坐标的最小值为()A. B. C.1 D.26.下列四个结论正确的是()A.两条直线都和同一个平面平行,则这两条直线平行B.两条直线没有公共点,则这两条直线平行C.两条直线都和第三条直线平行,则这两条直线平行D.两条直线都和第三条直线垂直,则这两条直线平行7.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样8.函数,是A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数9.在直三棱柱中,底面为直角三角形,,,是上一动点,则的最小值是()A. B. C. D.10.已知数列满足,(且),且数列是递增数列,数列是递减数列,又,则A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域是_____.12.如图,正方体ABCD﹣A1B1C1D1的棱长为1,M为B1C1中点,连接A1B,D1M,则异面直线A1B和D1M所成角的余弦值为________________________.13.半径为的圆上,弧长为的弧所对圆心角的弧度数为________.14.在中,角,,所对的边分别为,,,若,则角最大值为______.15.已知角的终边经过点,则______.16.已知与之间的一组数据,则与的线性回归方程必过点__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设是正项等比数列的前项和,已知,(1)求数列的通项公式;(2)令,求数列的前项和.18.已知数列满足,且(,且).(1)求证:数列是等差数列;(2)求数列的通项公式(3)设数列的前项和,求证:.19.在中,的对边分别为,已知.(1)求的值;(2)若的面积为,,求的值.20.已知向量,向量为单位向量,向量与的夹角为.(1)若向量与向量共线,求;(2)若与垂直,求.21.记公差不为零的等差数列{an}的前n项和为Sn,已知=2,是与的等比中项.(Ⅰ)求数列{an}的通项公式;(Ⅱ)求数列{}的前n项和Tn.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
设点,根据条件知点均在单位圆上,由向量数量积或斜率知识,可发现,对目标式子进行变形,发现其几何意义为两点到直线的距离之和有关.【详解】设,,均在圆上,且,设的中点为,则点到原点的距离为,点在圆上,设到直线的距离分别为,,,.【点睛】利用数形结合思想,发现代数式的几何意义,即构造系数,才能看出目标式子的几何意义为两点到直线距离之和的倍.2、B【解析】
先根据题意确定的值,再由余弦定理可直接求得的值.【详解】在中知∠ACB=120°,由余弦定理得AB2=AC2+BC2-2AC·BCcos120°=2a2-2a2×=3a2,∴AB=a.故选:B.【点睛】本题主要考查余弦定理的应用,属于基础题.3、D【解析】
根据题意,得到该屠户每天屠的肉成等比数列,记首项为,公比为,前项和为,由题中熟记,以及等比数列的求和公式,即可得出结果.【详解】由题意,该屠户每天屠的肉成等比数列,记首项为,公比为,前项和为,所以,,因此.故选:D【点睛】本题主要考查等比数列的应用,熟记等比数列的求和公式即可,属于基础题型.4、A【解析】
,不妨设,,则,选A.5、D【解析】
由题意首先利用平面向量的坐标运算法则确定纵坐标的解析式,然后结合二次函数的性质确定点P纵坐标的最小值即可.【详解】设,则,,故,恒成立,即恒成立,据此可得:,故,当且仅当时等号成立.据此可得的最小值为,则的最小值为.即点纵坐标的最小值为2.故选D.【点睛】本题主要考查平面向量的坐标运算,二次函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.6、C【解析】
利用空间直线平面位置关系对每一个选项分析得解.【详解】A.两条直线都和同一个平面平行,则这两条直线平行、相交或异面,所以该选项错误;B.两条直线没有公共点,则这两条直线平行或异面,所以该选项错误;C.两条直线都和第三条直线平行,则这两条直线平行,是平行公理,所以该选项正确;D.两条直线都和第三条直线垂直,则这两条直线平行、相交或异面,所以该选项错误.故选:C【点睛】本题主要考查直线平面的位置关系的判断,意在考查学生对这些知识的理解掌握水平,属于基础题.7、C【解析】试题分析:符合分层抽样法的定义,故选C.考点:分层抽样.8、A【解析】
判断函数函数,的奇偶性,求出其周期即可得到结论.【详解】设则故函数函数,是奇函数,由故函数,是最小正周期为的奇函数.故选A.【点睛】本题考查正弦函数的奇偶性和周期性,属基础题.9、B【解析】
连,沿将展开与在同一个平面内,不难看出的最小值是的连线,由余弦定理即可求解.【详解】解:连,沿将展开与在同一个平面内,如图所示,
连,则的长度就是所求的最小值.
,可得
又,
,
在中,由余弦定理可求得,故选B.【点睛】本题考查棱柱的结构特征,余弦定理的应用,是中档题.10、A【解析】
根据已知条件可以推出,当为奇数时,,当为偶数时,,因此去绝对值可以得到,,利用累加法继而算出结果.【详解】,即,或,又,.数列为递增数列,数列为递减数列,当为奇数时,,当为偶数时,,..故选A.【点睛】本题主要考查了通过递推式求数列的通项公式,数列单调性的应用,以及并项求和法的应用。二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
由题意得到关于x的不等式,解不等式可得函数的定义域.【详解】由已知得,即解得,故函数的定义域为.【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.12、.【解析】
连接、,取的中点,连接,可知,且是以为腰的等腰三角形,然后利用锐角三角函数可求出的值作为所求的答案.【详解】如下图所示:连接、,取的中点,连接,在正方体中,,则四边形为平行四边形,所以,则异面直线和所成的角为或其补角,易知,由勾股定理可得,,为的中点,则,在中,,因此,异面直线和所成角的余弦值为,故答案为.【点睛】本题考查异面直线所成角的余弦值的计算,求解异面直线所成的角一般利用平移直线法求解,遵循“一作、二证、三计算”,在计算时,一般利用锐角三角函数的定义或余弦定理求解,考查计算能力,属于中等题.13、【解析】
根据弧长公式即可求解.【详解】由弧长公式可得故答案为:【点睛】本题主要考查了弧长公式的应用,属于基础题.14、【解析】
根据余弦定理列式,再根据基本不等式求最值【详解】因为所以角最大值为【点睛】本题考查余弦定理以及利用基本不等式求最值,考查基本分析求解能力,属中档题15、【解析】由题意,则.16、【解析】
根据线性回归方程一定过样本中心点,计算这组数据的样本中心点,求出和的平均数即可求解.【详解】由题意可知,与的线性回归方程必过样本中心点,,所以线性回归方程必过.故答案为:【点睛】本题是一道线性回归方程题目,需掌握线性回归方程必过样本中心点这一特征,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)设正项等比数列的公比为,当时,可验证出,可知;根据可构造方程求得,进而根据等比数列通项公式可求得结果;(2)由(1)可得,采用错位相减法即可求得结果.【详解】(1)设正项等比数列的公比为当时,,解得:,不合题意由得:,又整理得:,即,解得:(2)由(1)得:…①则…②①②得:【点睛】本题考查等比数列通项公式的求解、错位相减法求解数列的前项和;关键是能够得到数列的通项公式后,根据等差乘以等比的形式确定采用错位相减法求得结果,对学生的计算和求解能力有一定要求.18、(1)详见解析;(2);(3)详见解析.【解析】
(1)用定义证明得到答案.(2)推出(3)利用错位相减法和分组求和法得到,再证明不等式.【详解】解:(1)由,得,即.∴数列是以为首项,1为公差的等差数列.(2)∵数列是以为首项,1为公差的等差数列,∴,∴.(3).∴,∴.【点睛】本题考查了等差数列的证明,分组求和法,错位相减法,意在考查学生对于数列公式方法的灵活运用.19、(Ⅰ)(Ⅱ)【解析】
(1)根据二倍角和诱导公式可得的值;(2)根据面积公式求,然后利用余弦定理求,最后根据正弦定理求的值.【详解】(1),,所以原式整理为,解得:(舍)或,;(2),解得,根据余弦定理,,,代入解得:,.【点睛】本题考查了根据正余弦定理解三角形,属于简单题.20、(1)(2)【解析】
(1)共线向量夹角为0°或180°,由此根据定义可求得两向量数量积.(2)由向量垂直转化为向量的当量积为0,从而求得,也就求得,再由余弦的二倍角公式可得.【详解】法一(1),故或向量,向量法二(1),设即或或(2)法一:依题意,,故法二:设即,又或【点睛】本题考查向量共线,向量垂直与数量积的关系,考查平面向量的数量积运算.解题时按向量数量积的定义计算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Leucomycin-A6-生命科学试剂-MCE
- 2025年中期美股策略观点:溢价收敛龙头为先
- 农业农村土地制度改革与土地流转政策研究报告
- 量子密钥分发在工业互联网平台中的数据加密效率优化报告
- 金融行业数据治理与隐私保护在金融大数据分析中的应用报告
- 文化艺术中心建筑2025年初步设计可持续发展评估报告
- 2025年农业绿色生产模式与新型农业经营主体培育策略研究报告
- 工业互联网平台安全多方计算在智能制造领域的应用案例分析报告
- 基于监管视角的美国次贷危机成因分析及其对我国的启示
- 国立高雄大学东亚语文学系‘近(现)代史’第7堂明治国际关系大正
- 上海证券交易所会计监管动态(2024年第2期,总第20期)2024.5.29
- 基础会计教学质量分析报告
- 2025年中国品牌燕麦片(麦片) 市场供需格局及未来发展趋势报告
- 2025年水发集团社会招聘(249人)笔试参考题库附带答案详解
- 国家开放大学《四史通讲》形考作业1-7答案
- 计量管理知到智慧树章节测试课后答案2024年秋中国计量大学
- 《宏观经济学原理》课件
- 以学为主的历史教学心得体会
- 河口区域生态规划-深度研究
- 2024年保山市小升初英语考试模拟试题及答案解析
- 临床试验管理委员会的职责与流程
评论
0/150
提交评论