版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市外国语学校2024年高一下数学期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.棉花的纤维长度是棉花质量的重要指标.在一批棉花中抽测了根棉花的纤维长度(单位:),将样本数据作成如下的频率分布直方图:下列关于这批棉花质量状况的分析,不合理的是()A.这批棉花的纤维长度不是特别均匀B.有一部分棉花的纤维长度比较短C.有超过一半的棉花纤维长度能达到以上D.这批棉花有可能混进了一些次品2.《趣味数学·屠夫列传》中有如下问题:“戴氏善屠,日益功倍。初日屠五两,今三十日屠讫,问共屠几何?”其意思为:“有一个姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5两肉,共屠了30天,问一共屠了多少两肉?”()A. B. C. D.3.如图,正方形中,分别是的中点,若则()A. B. C. D.4.设是等差数列的前项和,若,则A. B. C. D.5.若角的终边经过点,则()A. B. C. D.6.若圆的圆心在第一象限,则直线一定不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知直线过点且与直线垂直,则该直线方程为()A. B.C. D.8.某防疫站对学生进行身体健康调查,与采用分层抽样的办法抽取样本.某中学共有学生2000名,抽取了一个容量为200的样本,样本中男生103人,则该中学共有女生()A.1030人 B.97人 C.950人 D.970人9.已知是的边上的中点,若向量,,则向量等于()A. B. C. D.10.某实验单次成功的概率为0.8,记事件A为“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中至少成功2次”,现采用随机模拟的方法估计事件4的概率:先由计算机给出0~9十个整数值的随机数,指定0,1表示单次实验失败,2,3,4,5,6,7,8,9表示单次实验成功,以3个随机数为组,代表3次实验的结果经随机模拟产生了20组随机数,如下表:752029714985034437863694141469037623804601366959742761428261根据以上方法及数据,估计事件A的概率为()A.0.384 B.0.65 C.0.9 D.0.904二、填空题:本大题共6小题,每小题5分,共30分。11.若点在幂函数的图像上,则函数的反函数=________.12.设,则等于________.13.已知数列是等差数列,若,,则________.14.设向量,,______.15.将一个圆锥截成圆台,已知截得的圆台的上、下底面面积之比是1:4,截去的小圆锥母线长为2,则截得的圆台的母线长为________.16.设是数列的前项和,且,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.甲,乙两机床同时加工直径为100cm的零件,为检验质量,各从中抽取6件测量的数据为:甲:99,100,98,100,100,103乙:99,100,102,99,100,100(1)分别计算两组数据的平均数及方差(2)根据计算结果判断哪台机床加工零件的质量更稳定.18.已知等比数列的公比,前项和为,且满足.,,分别是一个等差数列的第1项,第2项,第5项.(1)求数列的通项公式;(2)设,求数列的前项和;(3)若,的前项和为,且对任意的满足,求实数的取值范围.19.已知是一个公差大于的等差数列,且满足,数列满足等式:(1)求数列的通项公式;(2)求数列的前项和.20.己知,,且函数的图像上的任意两条对称轴之间的距离的最小值是.(1)求的值:(2)将函数的图像向右平移单位后,得到函数的图像,求函数在上的最值,并求取得最值时的的值.21.在中,角的对边分别为,已知,,.(1)求的值;(2)求和的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据频率分布直方图计算纤维长度超过的频率,可知不超过一半,从而得到结果.【详解】由频率分布直方图可知,纤维长度超过的频率为:棉花纤维长度达到以上的不超过一半不合理本题正确选项:【点睛】本题考查利用频率分布直方图估计总体数据的分布特征,关键是能够熟练掌握利用频率分布直方图计算频率的方法.2、D【解析】
根据题意,得到该屠户每天屠的肉成等比数列,记首项为,公比为,前项和为,由题中熟记,以及等比数列的求和公式,即可得出结果.【详解】由题意,该屠户每天屠的肉成等比数列,记首项为,公比为,前项和为,所以,,因此.故选:D【点睛】本题主要考查等比数列的应用,熟记等比数列的求和公式即可,属于基础题型.3、D【解析】试题分析:取向量作为一组基底,则有,所以又,所以,即.4、A【解析】,,选A.5、B【解析】
根据任意角的三角函数的定义,可以直接求到本题答案.【详解】因为点在角的终边上,所以.故选:B【点睛】本题主要考查利用任意角的三角函数的定义求值.6、A【解析】
由圆心位置确定,的正负,再结合一次函数图像即可判断出结果.【详解】因为圆的圆心坐标为,由圆心在第一象限可得,所以直线的斜率,轴上的截距为,所以直线不过第一象限.【点睛】本题主要考查一次函数的图像,属于基础题型.7、A【解析】
根据垂直关系求出直线斜率为,再由点斜式写出直线。【详解】由直线与直线垂直,可知直线斜率为,再由点斜式可知直线为:即.故选A.【点睛】本题考查两直线垂直,属于基础题。8、D【解析】由分层抽样的办法可知在名学生中抽取的男生有,故女生人数为,应选答案D.9、C【解析】
根据向量加法的平行四边形法则,以及平行四边形的性质可得,,解出向量.【详解】根据平行四边形法则以及平行四边形的性质,有.故选.【点睛】本题考查向量加法的平行四边形法则以及平行四边形的性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.10、C【解析】
由随机模拟实验结合图表计算即可得解.【详解】由随机模拟实验可得:“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中最多成功1次”共141,601两组随机数,则“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中至少成功2次”共组随机数,即事件的概率为,故选.【点睛】本题考查了随机模拟实验及识图能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据函数经过点求出幂函数的解析式,利用反函数的求法,即可求解.【详解】因为点在幂函数的图象上,所以,解得,所以幂函数的解析式为,则,所以原函数的反函数为.故答案为:【点睛】本题主要考查了幂函数的解析式的求法,以及反函数的求法,其中熟记反函数的求法是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】
首先根据题中求出的周期,然后利用周期性即可求出答案.【详解】由题知,有,故的周期为,故,又因为,有.故答案为:.【点睛】本题考查了三角函数的周期性,属于基础题.13、【解析】
求出公差,利用通项公式即可求解.【详解】设公差为,则所以故答案为:【点睛】本题主要考查了等差数列基本量的计算,属于基础题.14、【解析】
利用向量夹角的坐标公式即可计算.【详解】.【点睛】本题主要考查了向量夹角公式的坐标运算,属于容易题.15、2【解析】
由截得圆台上,下底面积之比可得上,下底面半径之比,再根据小圆锥的母线即可得圆台母线.【详解】设截得的圆台的母线长为.因为截得的圆台的上、下底面面积之比是1:4,所以截得的圆台的上、下底面半径之比是1:2.因为截去的小圆锥母线长为2,所以,解得.【点睛】本题考查求圆台的母线,属于基础题.16、【解析】原式为,整理为:,即,即数列是以-1为首项,-1为公差的等差的数列,所以,即.【点睛】这类型题使用的公式是,一般条件是,若是消,就需当时构造,两式相减,再变形求解;若是消,就需在原式将变形为:,再利用递推求解通项公式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);,,;(2)乙机床加工零件的质量更稳定.【解析】
(1)根据题中数据,结合平均数与方差的公式,即可得出结果;(2)根据(1)的结果,结合平均数与方差的意义,即可得出结果.【详解】(1)由题中数据可得:;,所以,;(2)两台机床所加工零件的直径的平均值相同,又所以乙机床加工零件的质量更稳定.【点睛】本题主要考查平均数与方差,熟记公式即可,属于常考题型.18、(1).(2);(3)【解析】
(1)利用等比数列通项公式以及求和公式化简,得到,由,,分别是一个等差数列的第1项,第2项,第5项,利用等差数列的定义可得,化简即可求出,从而得到数列的通项公式.(2)由(1)可得,利用错位相减,求出数列的前项和即可;(3)结合(1)可得,利用裂项相消法,即可得到的前项和,求出的最大值,即可解得实数的取值范围【详解】(1)由得,所以,由,,分别是一个等差数列的第1项,第2项,第5项,得,即,即,即,因为,所以,所以.(2)由于,所以,所以,,两式相减得,,所以(3)由知,∴,∴,解得或.即实数的取值范围是【点睛】本题考查等比数列通项公式与前项和,等差数列的定义,以及利用错位相减法和裂项相消法求数列的前项和,考查学生的计算能力,有一定综合性.19、【解析】
(1)利用等差中项得到关于,的方程组,利用通项公式求得公差,则数列的通项公式可求;(2)把数列的通项公式代入,得,作差可得,再由数列的分组求和可得数列的前项和.【详解】(1)在等差数列中,由,得,又,可得或.,,则..(2)由,得,,即,满足上式,.则,数列的前项和,.【点睛】本题考查数列递推式、临差法求数列通项、数列的分组求和等知识,考查运算求解能力,求解时要注意数列通项中的下标的限制.20、(1)1;(1)此时,此时【解析】
(1)由条件利用两角和差的正弦公式化简f(x)的解析式,由周期求出ω,由f(2)=2求出的值,可得f(x)的解析式,从而求得f()的值.(1)由条件利用函数y=Asin(ωx+)的图象变换规律求得g(x)的解析式,再根据正弦函数的定义域和值域求得g(x)在x∈[]上的最值.【详解】(1)f(x)=sin(ωx+)+cos(ωx+)=,故,求得ω=1.再根据,可得=﹣,故.(1)将函数y=f(x)的图象向右平移个单位后,得到函数y=g(x)=的图象.∵x∈[],∴,当时,即时,g(x)取得最大值为;当时,即时,g(x)取得最小值为2.【点睛】本题主要考查两角和差的正弦公式,由函数y=Asin(ωx+)的部分图象求解析式,函数y=Asin(ωx+)的图象变换规律,正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年买卖合同解约通知书
- 2025年加盟合作推广协议
- 2025年仓储经营租赁协议
- 2025版旅行社与农家乐餐饮服务合作协议4篇
- 二零二五版商业空间布展设计合同2篇
- 二零二五年度网络安全临时员工合作协议3篇
- 2025企业商务策划(咨询)委托合同书
- 2025年校园小卖部会员积分制度合作协议3篇
- 二零二五年酒店入股与本土文化融合协议3篇
- 二零二五年度图书出版贴牌合作协议
- 抗心律失常药物临床应用中国专家共识
- 考级代理合同范文大全
- 2024解析:第三章物态变化-讲核心(原卷版)
- DB32T 1590-2010 钢管塑料大棚(单体)通 用技术要求
- 安全行车知识培训
- 2024年安徽省高校分类对口招生考试数学试卷真题
- 第12讲 语态一般现在时、一般过去时、一般将来时(原卷版)
- 2024年采购员年终总结
- 2024年新疆区公务员录用考试《行测》试题及答案解析
- 肺动脉高压的护理查房课件
- 2025届北京巿通州区英语高三上期末综合测试试题含解析
评论
0/150
提交评论