版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省泉州市2024年高一数学第二学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为比较甲、乙两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为:()A.①③ B.①④ C.②③ D.②④2.已知集合,对于满足集合A的所有实数t,使不等式恒成立的x的取值范围为A. B.C. D.3.在正方体中,与棱异面的棱有()A.8条 B.6条 C.4条 D.2条4.若,则()A.0 B.-1 C.1或0 D.0或-15.已知直线的倾斜角为,则()A. B. C. D.6.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”7.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为5的正方形将其包含在内,并向该正方形内随机投掷1000个点,己知恰有400个点落在阴影部分,据此可估计阴影部分的面积是A.2 B.3 C.10 D.158.函数,当上恰好取得5个最大值,则实数的取值范围为()A. B. C. D.9.设函数,则()A.2 B.4 C.8 D.1610.的展开式中含的项的系数为()A.-1560 B.-600 C.600 D.1560二、填空题:本大题共6小题,每小题5分,共30分。11.数列满足,当时,,则是否存在不小于2的正整数,使成立?若存在,则在横线处直接填写的值;若不存在,就填写“不存在”_______.12.已知{}是等差数列,是它的前项和,且,则____.13.已有无穷等比数列的各项的和为1,则的取值范围为__________.14.如图是一个算法流程图.若输出的值为4,则输入的值为______________.15.已知正数、满足,则的最小值是________.16.等比数列的首项为,公比为q,,则首项的取值范围是____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,底面,,,,,点为棱的中点.(1)证明:;(2)求三棱锥的体积.18.在直角中,,延长至点D,使得,连接.(1)若,求的值;(2)求角D的最大值.19.年月日是第二十七届“世界水日”,月日是第三十二届“中国水周”.我国纪念年“世界水日”和“中国水周”活动的宣传主题为“坚持节水优先,强化水资源管理”.某中学课题小组抽取、两个小区各户家庭,记录他们月份的用水量(单位:)如下表:小区家庭月用水量小区家庭月用水量(1)根据两组数据完成下面的茎叶图,从茎叶图看,哪个小区居民节水意识更好?(2)从用水量不少于的家庭中,、两个小区各随机抽取一户,求小区家庭的用水量低于小区的概率.20.已知的内角A,B,C所对的边分别为a,b,c,且.(1)若,求的值;(2)若,求b,c的值.21.如图,在三棱锥中,,分别为棱,上的三等份点,,.(1)求证:平面;(2)若,平面,求证:平面平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据中位数,平均数,方差的概念计算比较可得.【详解】甲的中位数为29,乙的中位数为30,故①不正确;甲的平均数为29,乙的平均数为30,故②正确;从比分来看,乙的高分集中度比甲的高分集中度高,故③正确,④不正确.故选C.【点睛】本题考查了茎叶图,属基础题.平均数即为几个数加到一起除以数据的个数得到的结果.2、B【解析】
由条件求出t的范围,不等式变形为恒成立,即不等式恒成立,再由不等式的左边两个因式同为正或同为负处理.【详解】由得,,
不等式恒成立,即不等式恒成立,即不等式恒成立,
只需或恒成立,
只需或恒成立,
只需或即可.
故选:B.【点睛】本题考查了一元二次不等式的解法问题,难度较大,充分利用恒成立的思想解题是关键.3、C【解析】
在正方体12条棱中,找到与平行的、相交的棱,然后计算出与棱异面的棱的条数.【详解】正方体共有12条棱,其中与平行的有共3条,与与相交的有共4条,因此棱异面的棱有条,故本题选C.【点睛】本题考查了直线与直线的位置关系,考查了异面直线的判断.4、D【解析】
由二倍角公式可得,即,从而分情况求解.【详解】易得,或.
由得.
由,得.故选:D【点睛】本题考查二倍角公式的应用以及有关的二次齐次式子求值,属于中档题.5、B【解析】
根据直线斜率与倾斜角的关系求解即可.【详解】因为直线的倾斜角为,故直线斜率.故选:B【点睛】本题主要考查了直线的倾斜角与斜率的关系,属于基础题.6、C【解析】
结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【详解】对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【点睛】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题.7、C【解析】
根据古典概型概率公式以及几何概型概率公式分别计算概率,解方程可得结果.【详解】设阴影部分的面积是s,由题意得4001000【点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.8、C【解析】
先求出取最大值时的所有的解,再解不等式,由解的个数决定出的取值范围.【详解】设,所以,解得,所以满足的值恰好只有5个,所以的取值可能为0,1,2,3,4,由,故选C.【点睛】本题主要考查正弦函数的最值以及不等式的解法,意在考查学生的数学运算能力.9、B【解析】
根据分段函数定义域,代入可求得,根据的值再代入即可求得的值.【详解】因为所以所以所以选B【点睛】本题考查了根据定义域求分段函数的值,依次代入即可,属于基础题.10、A【解析】的项可以由或的乘积得到,所以含的项的系数为,故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、70【解析】
构造数列,两式与相减可得数列{}为等差数列,求出,让=0即可求出.【详解】设两式相减得又数列从第5项开始为等差数列,由已知易得均不为0所以当n=70的时候成立,故答案填70.【点睛】如果递推式中出现和的形式,比如,可以尝试退项相减,即让取后,两式作差,和的部分因为相减而抵消,剩下的就好算了。12、【解析】
根据等差数列的性质得,由此得解.【详解】解:由题意可知,;同理。故.故答案为:【点睛】本题考查了等差数列的性质,属于基础题.13、【解析】
根据无穷等比数列的各项和表达式,将用公比表示,根据的范围求解的范围.【详解】因为且,又,且,则.【点睛】本题考查无穷等比数列各项和的应用,难度一般.关键是将待求量与公比之间的关系找到,然后根据的取值范围解决问题.14、-1【解析】
对的范围分类,利用流程图列方程即可得解.【详解】当时,由流程图得:令,解得:,满足题意.当时,由流程图得:令,解得:,不满足题意.故输入的值为:【点睛】本题主要考查了流程图知识,考查分类思想及方程思想,属于基础题.15、.【解析】
利用等式得,将代数式与代数式相乘,利用基本不等式求出的最小值,由此可得出的最小值.【详解】,所以,由基本不等式可得,当且仅当时,等号成立,因此,的最小值是,故答案为:.【点睛】本题考查利用基本不等式求最值,解题时要对代数式进行合理配凑,考查分析问题和解决问题的能力,属于中等题.16、【解析】
由题得,利用即可得解【详解】由题意知,,可得,又因为,所以可求得.故答案为:【点睛】本题考查了等比数列的通项公式其前n项和公式、数列极限的运算法则,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】
(1)以A为坐标原点,建立如图所示的空间直角坐标系,求出BE,DC的方向向量,根据•=0,可得BE⊥DC;(2)由点为棱的中点,且底面,利用等体积法得.【详解】(1)∵底面,,以为坐标原点,建立如图所示的空间直角坐标系,∵,,点为棱的中点.∴(1,0,0),(2,2,0),(0,2,0),(0,0,2),(1,1,1)∴=(0,1,1),=(2,0,0),∵•=0,可得BE⊥DC;(2)由点为棱的中点,且底面,利用等体积法得.【点睛】本题考查了空间线面垂直的判定,利用了向量法,也考查了等体积法求体积,属于中档题.18、(1);(2).【解析】
(1)在中,由正弦定理得,,再结合在直角中,,然后求解即可;(2)由正弦定理及两角和的余弦可得,然后结合三角函数的有界性求解即可.【详解】解:(1)设,在中,由正弦定理得,,而在直角中,,所以,因为,所以,又因为,所以,所以,所以;(2)设,在中,由正弦定理得,,而在直角中,,所以,因为,所以,即,即,根据三角函数有界性得,及,解得,所以角D的最大值为.【点睛】本题考查了正弦定理,重点考查了三角函数的有界性,属中档题.19、(1)见解析(2)【解析】
(1)根据表格中的数据绘制出茎叶图,并结合茎叶图中数据的分布可比较出两个小区居民节水意识;(2)列举出所有的基本事件,确定所有的基本事件数,然后确定事件“小区家庭的用水量低于小区”所包含的基本事件数,利用古典概型的概率公式可计算出事件“小区家庭的用水量低于小区”的概率.【详解】(1)绘制如下茎叶图:由以上茎叶图可以看出,小区月用水量有的叶集中在茎、上,而小区月用水量有的叶集中在茎、上,由此可看出小区居民节水意识更好;(2)从用水量不少于的家庭中,、两个小区各随机抽取一户的结果:、、、、、、、,共个基本事件,小区家庭的用水量低于小区的的结果:、、,共个基本事件.所以,小区家庭的用水量低于小区的概率是.【点睛】本题考查茎叶图的绘制与应用,以及利用古典概型计算事件的概率,考查收集数据与处理数据的能力,考查计算能力,属于中等题.20、(1);(2)【解析】
(1)先求出,再利用正弦定理可得结果;(2)由求出,再利用余弦定理解三角形.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 计算机软硬件购销合同
- 详解投标人须知的招标文件核心内容
- 语文大专阅读理解卷
- 财务顾问合同服务亮点
- 货物采购招标文件模板要点
- 质量技能担保
- 购物卡采购合同版
- 购销合同延期的影响
- 购销合同门禁系统的技术实践经验
- 走读生自觉培养自我保护能力保证书
- DB44-T+2537-2024小型水电站退役导则
- 肠道健康与全身健康的关系
- 招聘助理招聘面试题及回答建议(某大型国企)
- 大河的馈赠 课件 2024-2025学年鲁教版(五四制)初中美术六年级上册
- 江苏省南通市如皋市十四校联考2024-2025学年高三上学期教学质量调研(二)数学试题(含解析)
- 2024年初中七年级英语上册单元写作范文(新人教版)
- 2025年蛇年年会汇报年终总结大会模板
- 新编苏教版一年级科学上册实验报告册(典藏版)
- 广东省广州市2024年中考数学真题试卷(含答案)
- 九年级化学上册第四章《认识化学变化》测试卷-沪教版(含答案)
- 2023年甘肃白银有色集团股份有限公司招聘考试真题
评论
0/150
提交评论