![新疆昌吉玛纳斯县第一中学2024届高一下数学期末监测试题含解析_第1页](http://file4.renrendoc.com/view4/M00/1D/2E/wKhkGGZpR-iAABwAAAI7n6uYDvs046.jpg)
![新疆昌吉玛纳斯县第一中学2024届高一下数学期末监测试题含解析_第2页](http://file4.renrendoc.com/view4/M00/1D/2E/wKhkGGZpR-iAABwAAAI7n6uYDvs0462.jpg)
![新疆昌吉玛纳斯县第一中学2024届高一下数学期末监测试题含解析_第3页](http://file4.renrendoc.com/view4/M00/1D/2E/wKhkGGZpR-iAABwAAAI7n6uYDvs0463.jpg)
![新疆昌吉玛纳斯县第一中学2024届高一下数学期末监测试题含解析_第4页](http://file4.renrendoc.com/view4/M00/1D/2E/wKhkGGZpR-iAABwAAAI7n6uYDvs0464.jpg)
![新疆昌吉玛纳斯县第一中学2024届高一下数学期末监测试题含解析_第5页](http://file4.renrendoc.com/view4/M00/1D/2E/wKhkGGZpR-iAABwAAAI7n6uYDvs0465.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆昌吉玛纳斯县第一中学2024届高一下数学期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知非零实数a,b满足,则下列不等关系一定成立的是()A. B. C. D.2.已知函数在处取得极小值,则的最小值为()A.4 B.5 C.9 D.103.己知ΔABC中,角A,B,C所对的边分別是a,b,c.若A=45°,B=30°,a=2,则bA.3-1 B.1 C.2 D.4.在△中,若,则△为()A.等腰三角形 B.直角三角形C.等腰或直角三角形 D.等腰直角三角形5.在区间上随机取一个数x,的值介于0到之间的概率为()A. B. C. D.6.边长为1的正方形上有一动点,则向量的范围是()A. B. C. D.7.已知函数,则在上的单调递增区间是()A. B. C. D.8.正六边形的边长为,以顶点为起点,其他顶点为终点的向量分别为;以顶点为起点,其他顶点为终点的向量分别为.若分别为的最小值、最大值,其中,则下列对的描述正确的是()A. B. C. D.9.已知向量,的夹角为,且,,则与的夹角等于A. B. C. D.10.设,,是平面内共线的三个不同的点,点是,,所在直线外任意-点,且满足,若点在线段的延长线上,则()A., B., C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列的首项为,公比为,其前项和为,下列命题中正确的是______.(写出全部正确命题的序号)(1)等比数列单调递增的充要条件是,且;(2)数列:,,,……,也是等比数列;(3);(4)点在函数(,为常数,且,)的图像上.12.《九章算术》是体现我国古代数学成就的杰出著作,其中(方田)章给出的计算弧田面积的经验公式为:弧田面积(弦矢矢2),弧田(如图阴影部分)由圆弧及其所对的弦围成,公式中“弦”指圆弧所对弦的长,“矢”等于半径长与圆心到弦的距离之差,现有弧长为米,半径等于米的弧田,则弧所对的弦的长是_____米,按照上述经验公式计算得到的弧田面积是___________平方米.13.若一个圆柱的侧面展开图是边长为2的正方形,则此圆柱的体积为.14.设函数的部分图象如图所示,则的表达式______.15.已知均为正数,则的最大值为______________.16.水平放置的的斜二测直观图如图所示,已知,,则边上的中线的实际长度为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列满足.(1)若,求的取值范围;(2)若是公比为等比数列,,求的取值范围;(3)若成等差数列,且,求正整数的最大值,以及取最大值时相应数列的公差.18.关于的不等式,其中为大于0的常数。(1)若不等式的解集为,求实数的取值范围;(2)若不等式的解集为,且中恰好含有三个整数,求实数的取值范围.19.在数1和100之间插入个实数,使得这个数构成递增的等比数列,将这个数的乘积记作,再令.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.20.设数列的前项和为,且.(1)求数列的通项公式;(2)若,为数列位的前项和,求;(3)在(2)的条件下,是否存在自然数,使得对一切恒成立?若存在,求出的值;若不存在,说明理由.21.已知函数.(1)求函数的单调递增区间;(2)在△ABC中,角A,B,C的对边分别为a,b,c,且,,求△ABC的面积的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据不等式的基本性质,一一进行判断即可得出正确结果.【详解】A.,取,显然不成立,所以该选项错误;B.,取,显然不成立,所以该选项错误;C.,取,显然不成立,所以该选项错误;D.,由已知且,所以,即.所以该选项正确.故选:.【点睛】本题考查不等式的基本性质,属于容易题.2、C【解析】由,得,则,所以,所以,当且仅当,即时,等号成立,故选C.3、B【解析】
由正弦定理可得.【详解】∵asinA=故选B.【点睛】本题考查正弦定理,解题时直接应用正弦定理可解题,本题属于基础题.4、A【解析】
利用正弦定理化简已知条件,得到,由此得到,进而判断出正确选项.【详解】由正弦定理得,所以,所以,故三角形为等腰三角形,故选A.【点睛】本小题主要考查利用正弦定理判断三角形的形状,考查同角三角函数的基本关系式,属于基础题.5、A【解析】因为,若,则,,故选A.6、A【解析】
分类,按在正方形的四条边上分别求解.【详解】如图,分别以为建立平面直角坐标系,,设,,∴,当在边或上时,,所以,当在边上时,,,当在边上时,,,∴的取值范围是.故选:A.【点睛】本题考查平面向量的数量积,通过建立坐标系,把向量和数量积用坐标表示,使问题简单化.7、C【解析】
先令,则可求得的单调区间,再根据,对赋值进而限定范围即可【详解】由题,令,则,当时,在上单调递增,则当时,的单调增区间为,故选:C【点睛】本题考查正弦型函数的单调区间,属于基础题8、A【解析】
利用向量的数量积公式,可知只有,其余数量积均小于等于0,从而得到结论.【详解】由题意,以顶点A为起点,其他顶点为终点的向量分别为,以顶点D为起点,其他顶点为终点的向量分别为,则利用向量的数量积公式,可知只有,其余数量积均小于等于0,又因为分别为的最小值、最大值,所以,故选A.【点睛】本题主要考查了向量的数量积运算,其中解答中熟记向量的数量积的运算公式,分析出向量数量积的正负是关键,着重考查了分析解决问题的能力,属于中档试题.9、C【解析】
根据条件即可求出,从而可求出,,,然后可设与的夹角为,从而可求出,根据向量夹角的范围即可求出夹角.【详解】,;,,;设与的夹角为,则;又,,故选.【点睛】本题主要考查向量数量积的定义运用,向量的模的求法,以及利用数量积求向量夹角.10、A【解析】
由题可得:,将代入整理得:,利用点在线段的延长线上可得:,问题得解.【详解】由题可得:,所以可化为:整理得:,即:又点在线段的延长线上,所以与反向,所以,故选A【点睛】本题主要考查了平面向量中三点共线的推论,还考查了向量的减法及数乘向量的应用,考查了转化思想,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、(3)【解析】
根据递增数列的概念,以及等比数列的通项公式,充分条件与必要条件的概念,可判断(1);令,为偶数,可判断(2);根据等比数列的性质,直接计算,可判断(3);令,结合题意,可判断(4),进而可得出结果.【详解】(1)若等比数列单调递增,则,所以或,故且不是等比数列单调递增的充要条件;(1)错;(2)若,为偶数,则,,因等比数列中的项不为,故此时数列,,,……,不成等比数列;(2)错;(3),所以(3)正确;(4)若,则,若点在函数的图像上,则,因,,故不能对任意恒成立;故(4)错.故答案为:(3)【点睛】本题主要考命题真假的判定,熟记等比数列的性质,以及等比数列的通项公式与求和公式即可,属于常考题型.12、【解析】
在中,由题意可知:,弧长为,即可以求出,则求得的值,根据题意可求矢和弦的值及弦长,利用公式可以完成.【详解】如上图在中,可得:,可以得:矢=所以:弧田面积(弦矢矢2)=所以填写(1).(2).【点睛】本题是数学文化考题,扇形为载体的新型定义题,求弦长属于简单的解三角形问题,而作为第二空,我们首先知道公式中涉及到了“矢”,所以我们必须把“矢”的定义弄清楚,再借助定义求出它的值,最后只是简单代入公式计算即能完成.13、2【解析】试题分析:设圆柱的底面半径为r,高为h,底面积为S,体积为V,则有2πr=2⇒r=1π,故底面面积S=πr考点:圆柱的体积14、【解析】
根据图象的最高点得到,由图象得到,故得,然后通过代入最高点的坐标或运用“五点法”得到,进而可得函数的解析式.【详解】由图象可得,∴,∴,∴.又点在函数的图象上,∴,∴,∴.又,∴.∴.故答案为.【点睛】已知图象确定函数解析式的方法(1)由图象直接得到,即最高点的纵坐标.(2)由图象得到函数的周期,进而得到的值.(3)的确定方法有两种.①运用代点法求解,通过把图象的最高点或最低点的坐标代入函数的解析式求出的值;②运用“五点法”求解,即由函数最开始与轴的交点(最靠近原点)的横坐标为(即令,)确定.15、【解析】
根据分子和分母的特点把变形为,运用重要不等式,可以求出的最大值.【详解】(当且仅当且时取等号),(当且仅当且时取等号),因此的最大值为.【点睛】本题考查了重要不等式,把变形为是解题的关键.16、【解析】
利用斜二测直观图的画图规则,可得为一个直角三角形,且,得,从而得到边上的中线的实际长度为.【详解】利用斜二测直观图的画图规则,平行于轴或在轴上的线段,长度保持不变;平行于轴或在轴上的线段,长度减半,利用逆向原则,所以为一个直角三角形,且,所以,所以边上的中线的实际长度为.【点睛】本题考查斜二测画法的规则,考查基本识图、作图能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)的最大值为1999,此时公差为.【解析】
(1)依题意:,又将已知代入求出x的范围;(2)先求出通项:,由求出,对q分类讨论求出Sn分别代入不等式Sn≤Sn+1≤3Sn,得到关于q的不等式组,解不等式组求出q的范围.(3)依题意得到关于k的不等式,得出k的最大值,并得出k取最大值时a1,a2,…ak的公差.【详解】(1)依题意:,∴;又∴3≤x≤27,综上可得:3≤x≤6(2)由已知得,,,∴,当q=1时,Sn=n,Sn≤Sn+1≤3Sn,即,成立.当1<q≤3时,,Sn≤Sn+1≤3Sn,即,∴不等式∵q>1,故3qn+1﹣qn﹣2=qn(3q﹣1)﹣2>2qn﹣2>0恒成立,而对于不等式qn+1﹣3qn+2≤0,令n=1,得q2﹣3q+2≤0,解得1≤q≤2,又当1≤q≤2,q﹣3<0,∴qn+1﹣3qn+2=qn(q﹣3)+2≤q(q﹣3)+2=(q﹣1)(q﹣2)≤0成立,∴1<q≤2,当时,,Sn≤Sn+1≤3Sn,即,∴此不等式即,3q﹣1>0,q﹣3<0,3qn+1﹣qn﹣2=qn(3q﹣1)﹣2<2qn﹣2<0,qn+1﹣3qn+2=qn(q﹣3)+2≥q(q﹣3)+2=(q﹣1)(q﹣2)>0∴时,不等式恒成立,∴q的取值范围为:.(3)设a1,a2,…ak的公差为d.由,且a1=1,得即当n=1时,d≤2;当n=2,3,…,k﹣1时,由,得d,所以d,所以1000=k,即k2﹣2000k+1000≤0,得k≤1999所以k的最大值为1999,k=1999时,a1,a2,…ak的公差为.【点睛】本题考查等比数列的通项公式及前n项和的求法;考查不等式组的解法;找好分类讨论的起点是解决本题的关键,属于一道难题.18、(1);(2)【解析】
(1)关于的不等式的解集为,得出判别式△,且,由此求出的取值范围;(2)由题意知判别式△,设,利用对称轴以及(1),,得出不等式的解集中恰好有三个整数,等价于,由此求出的取值范围.【详解】(1)由题意得一元二次不等式对应方程的判别式,结合,解得.(2)由题意得一元二次不等式对应方程的判别式,解得.又,所以.设,其对称轴为.注意到,,对称轴,所以不等式解集中恰好有三个整数只能是1、2、3,此时中恰好含有三个整数等价于:,解得.【点睛】本题考查了不等式的解法与应用问题.19、(Ⅰ)(Ⅱ)【解析】
(1)类比等差数列求和的倒序相加法,将等比数列前n项积倒序相乘,可求,代入即可求解.(2)由(1)知,利用两角差的正切公式,化简,,得,再根据裂项相消法,即可求解.【详解】(Ⅰ)由题意,构成递增的等比数列,其中,则①②①②,并利用等比数列性质,得(Ⅱ)由(Ⅰ)知,又所以数列的前项和为【点睛】(Ⅰ)类比等差数列,利用等比数列的相关性质,推导等比数列前项积公式,创新应用型题;(Ⅱ)由两角差的正切公式,推导连续两个自然数的正切之差,构造新型的裂项相消的式子,创新应用型题;本题属于难题.20、(1)(2)(3)【解析】
(1)根据题干可推导得到,进而得到数列是以为首项,为公比的等比数列,由等比数列的通项公式得到结果;(2)由错位相减的方法得到结果;(3)根据第二问得到:,数列单调递增,由数列的单调性得到数列范围.【详解】(1)由,令,则,又,所以.当时,由可得,,即,所以是以为首项,为公比的等比数列,于是.(2)∴∴从而.(3)由(2)知,∴数列单调递增,∴,又,∴要恒成立,则,解得,又,故.【点睛】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度农业产业工人劳务合作合同示范
- 鄂尔多斯2024年内蒙古鄂尔多斯市杭锦旗乌兰牧骑引进3名专业技术人员笔试历年参考题库附带答案详解
- 英德市四年级上学期11月期中语文试题(含解析)
- 玉溪云南玉溪市司法局招聘编外人员笔试历年参考题库附带答案详解
- 烟台2025年山东烟台黄渤海新区教育体育局招聘高层次人才177人笔试历年参考题库附带答案详解
- 楚雄云南楚雄元谋县消防救援局招聘9人笔试历年参考题库附带答案详解
- 杭州2025年上半年浙江杭州市卫生健康委员会所属九家事业单位招聘74人笔试历年参考题库附带答案详解
- 2025年中国学校课桌椅市场调查研究报告
- 2025年中国化工用电磁阀市场调查研究报告
- 2025至2031年中国黄杆皮头铅笔行业投资前景及策略咨询研究报告
- 商业银行的风险审计与内部控制
- 2024项目管理人员安全培训考试题及参考答案AB卷
- 2025年与商场合作协议样本(5篇)
- 2024年12月青少年机器人技术等级考试理论综合试卷(真题及答案)
- 网络与社交媒体管理制度
- 2025年安徽碳鑫科技有限公司招聘笔试参考题库含答案解析
- 2025年寒假实践特色作业设计模板
- 2024年福建漳州人才发展集团有限公司招聘笔试参考题库附带答案详解
- JTGT F20-2015 公路路面基层施工技术细则
- 马晓宏_《法语》_第一册复习(课堂PPT)
- 道路环卫清扫保洁项目应急处置预案
评论
0/150
提交评论