版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省栖霞二中2024年高一下数学期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,且,则m=()A.−8 B.−6C.6 D.82.某校高一甲、乙两位同学的九科成绩如茎叶图所示,则下列说法正确的是()A.甲、乙两人的各科平均分不同 B.甲、乙两人的中位数相同C.甲各科成绩比乙各科成绩稳定 D.甲的众数是83,乙的众数为873.如图,网格纸上正方形小格边长为,图中粗线画的是某几何体的三视图,则该几何体的表面积等于()A.B.C.D.4.设,是两个不同的平面,,是两条不同的直线,且,()A.若,则 B.若,则C.若,则 D.若,则5.已知x,y∈R,且x>y>0,则()A. B.C. D.lnx+lny>06.某市在“一带一路”国际合作高峰论坛前夕,在全市高中学生中进行“我和‘一带一路’”的学习征文,收到的稿件经分类统计,得到如图所示的扇形统计图.又已知全市高一年级共交稿2000份,则高三年级的交稿数为()A.2800 B.3000 C.3200 D.34007.在中,角,,所对的边分别为,,,若,,则等于()A.1 B.2 C. D.48.已知向量满足,.O为坐标原点,.曲线,区域.若是两段分离的曲线,则()A. B. C. D.9.已知函数,若在区间内没有零点,则的取值范围是A. B. C. D.10.直线(,)过点(-1,-1),则的最小值为()A.9 B.1 C.4 D.10二、填空题:本大题共6小题,每小题5分,共30分。11.设为实数,为不超过实数的最大整数,如,.记,则的取值范围为,现定义无穷数列如下:,当时,;当时,,若,则________.12.若在上是减函数,则的取值范围为______.13.若直线与曲线相交于A,B两点,O为坐标原点,当的面积取最大值时,实数m的取值____.14.在ΔABC中,a比c长4,b比c长2,且最大角的余弦值是-12,则15.已知函数,则函数的最小值是___.16.设直线与圆C:x2+y2-2ay-2=0相交于A,B两点,若,则圆C的面积为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数)(1)A类工人中和B类工人各抽查多少工人?(2)从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2:表1:生产能力分组人数48x53表2:生产能力分组人数6y3618①先确定x,y,再在答题纸上完成下列频率分布直方图.就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表)图1A类工人生产能力的频率分布直方图图2B类工人生产能力的频率分布直方图18.已知常数且,在数列中,首项,是其前项和,且,.(1)设,,证明数列是等比数列,并求出的通项公式;(2)设,,证明数列是等差数列,并求出的通项公式;(3)若当且仅当时,数列取到最小值,求的取值范围.19.已知函数.(1)求函数的单调减区间.(2)求函数的最大值并求取得最大值时的的取值集合.(3)若,求的值.20.在四棱锥P-ABCD中,四边形ABCD是正方形,PD⊥平面ABCD,且PD=AD=4,点E为线段PA的中点.(1)求证:PC∥平面BDE;(2)求三棱锥E-BCD的体积.21.若不等式的解集是.(1)求的值;(2)当为何值时,的解集为.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由已知向量的坐标求出的坐标,再由向量垂直的坐标运算得答案.【详解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故选D.【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题.2、C【解析】
分别计算出甲、乙两位同学成绩的平均分、中位数、众数,由此确定正确选项.【详解】甲的平均分为,乙的平均分,两人平均分相同,故A选项错误.甲的中位数为,乙的中位数为,两人中位数不相同,故B选项错误.甲的众数是,乙的众数是,故D选项错误.所以正确的答案为C.由茎叶图可知,甲的数据比较集中,乙的数据比较分散,所以甲比较稳定.(因为方差运算量特别大,故不需要计算出方差.)故选:C【点睛】本小题主要考查根据茎叶图比较平均数、中位数、众数、方差,属于基础题.3、C【解析】
由三视图可知该几何体是一个四棱锥,作出图形即可求出表面积。【详解】该几何体为四棱锥,如图..选C.【点睛】本题考查了三视图,考查了四棱锥的表面积,考查了学生的空间想象能力与计算能力,属于基础题。4、A【解析】试题分析:由面面垂直的判定定理:如果一个平面经过另一平面的一条垂线,则两面垂直,可得,可得考点:空间线面平行垂直的判定与性质5、A【解析】
结合选项逐个分析,可选出答案.【详解】结合x,y∈R,且x>y>0,对选项逐个分析:对于选项A,,,故A正确;对于选项B,取,,则,故B不正确;对于选项C,,故C错误;对于选项D,,当时,,故D不正确.故选A.【点睛】本题考查了不等式的性质,属于基础题.6、D【解析】
先求出总的稿件的数量,再求出高三年级交稿数占总交稿数的比例,再求高三年级的交稿数.【详解】高一年级交稿2000份,在总交稿数中占比,所以总交稿数为,高二年级交稿数占总交稿数的,所以高三年级交稿数占总交稿数的,所以高三年级交稿数为.故选D【点睛】本题主要考查扇形统计图的有关计算,意在考查学生对该知识的理解掌握水平,属于基础题.7、D【解析】
直接利用正弦定理得到,带入化简得到答案.【详解】正弦定理:即:故选D【点睛】本题考查了正弦定理,意在考查学生的计算能力.8、A【解析】
由圆的定义及平面向量数量积的性质及其运算可得:点P在以O为圆心,r为半径的圆上运动且点P在以Q为圆心,半径为1和2的圆环区域运动,由图可得解.【详解】建立如图所示的平面直角坐标系,则,,由,则,即点P在以O为圆心,r为半径的圆上运动,又,则点P在以Q为圆心,半径为1和2的圆环区域运动,由图可知:当C∩Ω是两段分离的曲线时,r的取值范围为:3<r<5,故选:A.【点睛】本题考查平面向量数量积的性质及其运算,利用数形结合思想,将向量问题转化为圆与圆的位置关系问题,考查转化与化归思想,属于中等题.9、B【解析】
函数,由,可得,,因此即可得出.【详解】函数由,可得解得,∵在区间内没有零点,
.故选B.【点睛】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.10、A【解析】
将点的坐标代入直线方程:,再利用乘1法求最值【详解】将点的坐标代入直线方程:,,当且仅当时取等号【点睛】已知和为定值,求倒数和的最小值,利用乘1法求最值。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据已知条件,计算数列的前几项,观察得出无穷数列呈周期性变化,即可求出的值。【详解】当时,,,,,……,无穷数列周期性变化,周期为2,所以。【点睛】本题主要考查学生的数学抽象能力,通过取整函数得到数列,观察数列的特征,求数列中的某项值。12、【解析】
化简函数解析式,,时,是余弦函数单调减区间的子集,即可求解.【详解】,时,,且在上是减函数,,,因为解得.【点睛】本题主要考查了函数的三角恒等变化,余弦函数的单调性,属于中档题.13、【解析】
点O到的距离,将的面积用表示出来,再利用均值不等式得到答案.【详解】曲线表示圆心在原点,半径为1的圆的上半圆,若直线与曲线相交于A,B两点,则直线的斜率,则点O到的距离,又,当且仅当,即时,取得最大值.所以,解得舍去).故答案为.【点睛】本题考查了点到直线的距离,三角形面积,均值不等式,意在考查学生的计算能力.14、15【解析】
由a比c长4,b比c长2,用c表示出a与b,可得出a为最大边,即A为最大角,可得出cosA的值,由A为三角形的内角,利用特殊角的三角函数值求出A的度数,同时利用余弦定理表示出cosA,将表示出的a与b代入,并根据最大角的余弦值,得到关于c的方程,求出方程的解得到c的值,然后由b,c及sinA的值,利用三角形的面积公式即可求出三角形ABC的面积.【详解】根据题意得:a=c+4,b=c+2,则a为最长边,∴A为最大角,又cosA=-12,且∴A=120cos整理得:c2-c-6=0,即(c−3)(解得:c=3或c=−2(舍去),∴a=3+4=7,b=3+2=5,则△ABC的面积S=12bcsinA=15故答案为:153【点睛】余弦定理一定要熟记两种形式:(1)a2=b2+15、5【解析】因为,所以,函数,当且仅当,即时等号成立.点睛:本题考查了基本不等式的应用,属于基础题.在用基本不等式时,注意"一正二定三相等"这三个条件,关键是找定值,在本题中,将拆成,凑成定值,再用基本不等式求出最小值.16、【解析】因为圆心坐标与半径分别为,所以圆心到直线的距离,则,解之得,所以圆的面积,应填答案.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)25,75(2)①5,15,直方图见解析,B类②123,133.8,131.1【解析】
(1)先计算抽样比为,进而可得各层抽取人数(2)①类、类工人人数之比为,按此比例确定两类工人需抽取的人数,再算出和即可.画出频率分布直方图,从直方图可以判断:类工人中个体间的差异程度更小②取每个小矩形的横坐标的中点乘以对应矩形的面积相加即得平均数.【详解】(1)由已知可得:抽样比,故类工人中应抽取:人,类工人中应抽取:人,(2)①由题意知,得,,得.满足条件的频率分布直方图如下所示:从直方图可以判断:类工人中个体间的差异程度更小.②,类工人生产能力的平均数,类工人生产能力的平均数以及全工厂工人生产能力的平均数的估计值分别为123,133.8和131.1【点睛】本题考查等可能事件、相互独立事件的概率、频率分布直方图的理解以及利用频率分布直方图求平均数等知识、考查运算能力.18、(1)证明见解析,;(2)证明见解析,;(3).【解析】
(1)令,求出的值,再令,由,得出,将两式相减得,再利用等比数列的定义证明为常数,可得出数列为等比数列,并确定等比数列的首项和公比,可求出;(2)由题意得出,再利用等差数列的定义证明出数列为等差数列,确定等差数列的首项和公差,可求出数列的通项公式;(3)求出数列的通项公式,由数列在时取最小值,可得出当时,,当时,,再利用参变量分离法可得出实数的取值范围.【详解】(1)当时,有,即,;当时,由,可得,将上述两式相减得,,,且,所以,数列是以,以为公比的等比数列,;(2)由(1)知,,由等差数列的定义得,且,所以,数列是以为首项,以为公差的等差数列,因此,;(3)由(2)知,,,由数列在时取最小值,可得出当时,,当时,,由,得,得在时恒成立,由于数列在时单调递减,则,此时,;由,得,得在时恒成立,由于数列在时单调递减,则,此时,.综上所述:实数的取值范围是.【点睛】本题考查利用定义证明等比数列和等差数列,证明时需结合题中数列递推式的结构进行证明,同时也考查数列最值问题,需要结合题中条件转化为与项的符号相关的问题,利用参变量分离法可简化计算,考查化归与转化思想和运算求解能力,综合性较强,属于难题.19、(1).(2)最大值是2,取得最大值时的的取值集合是.(3)【解析】
(1)利用三角恒等变换化简的解析式,再利用正弦函数的单调性,求得函数的单调区间;(2)根据的解析式以及正弦函数的最值,求得函数的最大值,以及取得最大值时的的取值集合;(3)根据题设条件求得,再利用二倍角的余弦公式求的值.【详解】(1),令,解得,所以的单调递减区间为;(2)由(1)知,故的最大值为2,此时,,解得,所以的最大值是2,取得最大值时的的取值集合是;(3),即,所以,所以.【点睛】本题主要考查三角函数的恒等变换,考查正弦型函数的图象和性质,熟练掌握正弦型函数的图象和性质是答题关键,属于中档题.20、(1)见解析(2)16【解析】
(1)证明EO∥PC得到PC∥平面BDE.(2)先证明EF就是三棱锥E-BCD的高,再利用体积公式得到三棱锥E-BCD的体积.【详解】(1)证明:连结AC交BD于O,连结EO.∵四边形ABCD是正方形,在ΔPAC中,O为AC中点,又∵E为PA中点∴EO∥PC.又∵PC⊄平面BDE,EO⊂平面BDE.∴PC∥平面BDE.(2)解:取AD中点F,连结EF.则EF∥PD且EF=1∵PD⊥平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年智能家居产品研发与生产销售合同2篇
- 实验室仪器设备维护服务合同20242篇
- 二零二四年度劳动合同标的:高级管理人员一年期全职服务3篇
- 2024版房地产项目宣传册制作与印刷合同3篇
- 基于2024年度行业竞争格局的并购策略合同3篇
- 2024年度商标许可使用合同标的及许可范围4篇
- 2024年度版权许可合同及其许可范围和使用条件
- 2024年度蔬菜直销加盟合作合同2篇
- 2024年度购物软件界面设计合同3篇
- 2024年度蔬菜品牌授权与代理合同2篇
- 中华人民共和国民法典(总则)培训课件
- TCSAE 178-2021 电动汽车高压连接器技术条件
- 邮政储蓄银行专业知识真题
- 自动扶梯大修施工方案
- GB1184-1996-T形状和位置公差未注公差值
- 施工平面布置图
- 线索的类型及应用【精选文档】
- 土地增值税清算底稿(中税协版)
- 下库大坝灌浆平洞施工方案
- 外贸报关用发票、装箱单、合同、报关单模板
- IMO和IMPA关于引航员登离船装置的要求解读
评论
0/150
提交评论