山东省平阴县第一中学2024届数学高一下期末检测模拟试题含解析_第1页
山东省平阴县第一中学2024届数学高一下期末检测模拟试题含解析_第2页
山东省平阴县第一中学2024届数学高一下期末检测模拟试题含解析_第3页
山东省平阴县第一中学2024届数学高一下期末检测模拟试题含解析_第4页
山东省平阴县第一中学2024届数学高一下期末检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省平阴县第一中学2024届数学高一下期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线(3-2k)x-y-6=0不经过第一象限,则k的取值范围为()A.-∞,32 B.-∞,322.若,则函数的最小值是()A. B. C. D.3.已知向量,满足,,,则()A.3 B.2 C.1 D.04.《九章算术》中的玉石问题:“今有玉方一寸,重七两;石方一寸,重六两.今有石方三寸,中有玉,并重十一斤(即176两),问玉、石重各几何?”其意思为:“宝玉1立方寸重7两,石料1立方寸重6两,现有宝石和石料混合在一起的一个正方体,棱长是3寸,质量是11斤(即176两),问这个正方体中的宝玉和石料各多少两?”如图所示的程序框图给出了对此题的一个求解算法,运行该程序框图,则输出的分别为()A.90,86 B.98,78 C.94,82 D.102,745.在面积为S的平行四边形ABCD内任取一点P,则三角形PBD的面积大于的概率为()A. B. C. D.6.函数的定义域是(

)A. B. C. D.7.已知向量a→=(2,0),|b→|=1,a→⋅A.2π3 B.π3 C.π8.已知一个三角形的三边是连续的三个自然数,且最大角是最小角的2倍,则该三角形的最小角的余弦值是()A. B.C. D.9.一个球自高为米的地方自由下落,每次着地后回弹高度为原来的,到球停在地面上为止,球经过的路程总和为()米A. B. C. D.10.某三棱锥的左视图、俯视图如图所示,则该三棱锥的体积是()A.3 B.2 C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.如果数据的平均数是,则的平均数是________.12.已知向量,,若,则__________.13.执行如图所示的程序框图,则输出结果_____.14.若是等比数列,,,且公比为整数,则______.15.用数学归纳法证明不等式“(且)”的过程中,第一步:当时,不等式左边应等于__________。16.正项等比数列中,存在两项使得,且,则的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某种汽车,购车费用是10万元,每年使用的保险费和汽油费为万元,年维修费第一年为万元,以后逐年递增万元,问这种汽车使用多少年时,它的年平均费用最少?18.如图几何体中,底面为正方形,平面,,且.(1)求证:平面;(2)求与平面所成角的大小.19.已知数列为等差数列,是数列的前n项和,且,.(1)求数列的通项公式;(2)令,求数列的前n项和.20.为了解人们对某种食材营养价值的认识程度,某档健康养生电视节目组织名营养专家和名现场观众各组成一个评分小组,给食材的营养价值打分(十分制).下面是两个小组的打分数据:第一小组第二小组(1)求第一小组数据的中位数与平均数,用这两个数字特征中的哪一种来描述第一小组打分的情况更合适?说明你的理由.(2)你能否判断第一小组与第二小组哪一个更像是由营养专家组成的吗?请比较数字特征并说明理由.(3)节目组收集了烹饪该食材的加热时间:(单位:)与其营养成分保留百分比的有关数据:食材的加热时间(单位:)营养成分保留百分比在答题卡上画出散点图,求关于的线性回归方程(系数精确到),并说明回归方程中斜率的含义.附注:参考数据:,.参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:,.21.已知是同一平面内的三个向量,其中.(Ⅰ)若,且,求;(Ⅱ)若,且与垂直,求实数的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由题意可得3﹣2k=0或3﹣2k<0,解不等式即可得到所求范围.【详解】直线y=(3﹣2k)x﹣6不经过第一象限,可得3﹣2k=0或3﹣2k<0,解得k≥3则k的取值范围是[32故选:D.【点睛】本题考查直线方程的运用,注意运用直线的斜率为0的情况,考查运算能力,属于基础题.2、B【解析】

直接用均值不等式求最小值.【详解】当且仅当,即时,取等号.故选:B【点睛】本题考查利用均值不等式求函数最小值,属于基础题.3、A【解析】

由,求出,代入计算即可.【详解】由题意,则.故答案为A.【点睛】本题考查了向量的数量积,考查了学生的计算能力,属于基础题.4、B【解析】(1);(2);(3);(4),输出分别为98,78。故选B。5、A【解析】

转化条件求出满足要求的P点的范围,求出面积比即可得解.【详解】如图,设P到BD距离为h,A到BD距离为H,则,,满足条件的点在和中,所求概率.故选:A.【点睛】本题考查了几何概型的概率计算,属于基础题.6、B【解析】

根据函数f(x)的解析式,列出使解析式有意义的不等式组,求出解集即可.【详解】∵函数f(x)=+lg(3x+1),∴;解得﹣<x<1,∴函数f(x)的定义域是(﹣,1).故选B.【点睛】本题考查了求函数定义域的应用问题,解题的关键是列出使函数解析式有意义的不等式组,是基础题目.7、A【解析】

直接利用向量夹角公式得到答案.【详解】解:向量a→=(2,0),|b→|=1,a可得cos<a→则a→与b的夹角为:2π故选:A.【点睛】本题考查向量的数量积的应用,向量的夹角的求法,是基本知识的考查.8、B【解析】

设的最大角为,最小角为,可得出,,由题意得出,由二倍角公式,利用正弦定理边角互化思想以及余弦定理可得出关于的方程,求出的值,可得出的值.【详解】设的最大角为,最小角为,可得出,,由题意得出,,所以,,即,即,将,代入得,解得,,,则,故选B.【点睛】本题考查利用正弦定理和余弦定理解三角形,解题时根据对称思想设边长可简化计算,另外就是充分利用二倍角公式进行转化是解本题的关键,综合性较强.9、D【解析】

设球第次到第次着地这一过程中球经过的路程为米,可知数列是以为首项,以为公比的等比数列,由此可得出球经过的路程总和为米.【详解】设球第次到第次着地这一过程中球经过的路程为米,则,由题意可知,数列是以为首项,以为公比的等比数列,因此,球经过的路程总和米.故选:D.【点睛】本题考查等比数列的实际应用,涉及到无穷等比数列求和问题,考查计算能力,属于中等题.10、D【解析】

根据三视图高平齐的原则得知锥体的高,结合俯视图可计算出底面面积,再利用锥体体积公式可得出答案.【详解】由三视图“高平齐”的原则可知该三棱锥的高为,俯视图的面积为锥体底面面积,则该三棱锥的底面面积为,因此,该三棱锥的体积为,故选D.【点睛】本题考查利用三视图求几何体的体积,解题时充分利用三视图“长对正,高平齐,宽相等”的原则得出几何体的某些数据,并判断出几何体的形状,结合相关公式进行计算,考查空间想象能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】

根据平均数的定义计算.【详解】由题意,故答案为:5.【点睛】本题考查求新数据的均值.掌握均值定义是解题关键.实际上如果数据的平均数是,则新数据的平均数是.12、1【解析】由,得.即.解得.13、1【解析】

弄清程序框图的算法功能是解题关键.由模拟执行程序,可知,本程序的算法功能是计算的值,依据数列求和方法——并项求和,即可求出.【详解】根据程序框图,可得程序框图的功能是计算并输出,输出的为1.【点睛】本题主要考查了含有循环结构的程序框图的算法功能的理解以及数列求和的基本方法——并项求和法的应用.正确得到程序框图的算法功能,选择合适的求和方法是解题的关键.14、512【解析】

由题设条件知和是方程的两个实数根,解方程并由公比q为整数,知,,由此能够求出公比,从而得到.【详解】是等比数列,

,,

,,

和是方程的两个实数根,

解方程,

得,,

公比q为整数,

,,

,解得,

.故答案为:512【点睛】本题考查等比数列的通项公式的求法,利用了等比数列下标和的性质,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.15、【解析】

用数学归纳法证明不等式(且),第一步,即时,分母从3到6,列出式子,得到答案.【详解】用数学归纳法证明不等式(且),第一步,时,左边式子中每项的分母从3开始增大至6,所以应是.即为答案.【点睛】本题考查数学归纳法的基本步骤,属于简单题.16、【解析】

先由已知求出公比,然后由求出满足的关系,最后求出的所有可能值得最小值.【详解】设数列公比为,由得,∴,解得(舍去),由得,,∵,所以只能取,依次代入,分别为2,,2,,,最小值为.故答案为:.【点睛】本题考查等比数列的性质,考查求最小值问题.解题关键是由等比数列性质求出满足的关系.接着求最小值,容易想到用基本不等式求解,但本题实质上由于,因此对应的只有5个,可以直接代入求值,然后比较大小即可.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、这种汽车使用年时,它的年平均费用最小【解析】

设这种汽车使用年时,它的年平均费用为万元,则,于是,当,即时,取得最小值,所以这种汽车使用10年时,它的年平均费用最小18、(1)见解析(2)【解析】

(1)由,,结合面面平行判定定理可证得平面平面,根据面面平行的性质证得结论;(2)连接交于点,连接,利用线面垂直的判定定理可证得平面,从而可知所求角为,在中利用正弦求得结果.【详解】(1)四边形为正方形又平面平面又,平面平面平面,平面平面平面平面(2)连接交于点,连接平面,平面又四边形为正方形平面,平面即为与平面所成角且又即与平面所成角为:【点睛】本题考查线面平行的证明、直线与平面所成角的求解,涉及到面面平行的判定与性质、线面垂直的判定与性质的应用;求解直线与平面所成角的关键是能够通过垂直关系将所求角放入直角三角形中来进行求解.19、(1)(2)【解析】

(1)由等差数列可得,求得,即可求得通项公式;(2)由(1),则利用裂项相消法求数列的和即可【详解】解:(1)因为数列是等差数列,且,,则,解得,所以(2)由(1),,所以【点睛】本题考查等差数列的通项公式,考查裂项相消法求数列的和20、(1)中位数为,平均数为,中位数更适合描述第一小组打分的情况;(2)由可知第二小组的打分人员更像是由营养专家组成;(3)散点图见解析;回归直线为:;的含义:该食材烹饪时间每加热多分钟,则其营养成分大约会减少.【解析】

(1)将第一小组打分按从小到大排序,根据中位数和平均数的计算方法求得中位数和平均数;由于存在极端数据,可知中位数更适合描述第一小组打分情况;(2)分别计算两组数据的方差,由可知第二小组打分相对集中,其更像是由营养专家组成;(3)由已知数据画出散点图;利用最小二乘法计算可得回归直线;根据的含义,可确定斜率的含义.【详解】(1)第一小组的打分从小到大可排序为:,,,,,,,则中位数为:平均数为:可发现第一小组中出现极端数据,会造成平均数偏低则由以上算得的两个数字特征可知,选择中位数更适合描述第一小组打分的情况.(2)第一小组:平均数为方差:第二小组:平均数:方差:可知,,第一小组的方差远大于第二小组的方差第二小组的打分相对集中,故第二小组的打分人员更像是由营养专家组成的(3)由已知数据,得散点图如下,,且,则关于的线性回归方程为:回归方程中斜率的含义:该食材烹饪时间每加热多分钟,则其营养成分大约会减少.【点睛】本题考查计算数据的中位数、平均数和方差、根据方差确定数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论