江西省南昌市莲塘镇第一中学2024届高一下数学期末监测试题含解析_第1页
江西省南昌市莲塘镇第一中学2024届高一下数学期末监测试题含解析_第2页
江西省南昌市莲塘镇第一中学2024届高一下数学期末监测试题含解析_第3页
江西省南昌市莲塘镇第一中学2024届高一下数学期末监测试题含解析_第4页
江西省南昌市莲塘镇第一中学2024届高一下数学期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省南昌市莲塘镇第一中学2024届高一下数学期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列说法不正确的是()A.圆柱的侧面展开图是一个矩形B.圆锥过轴的截面是一个等腰三角形C.平行于圆台底面的平面截圆台,截面是圆面D.直角三角形绕它的一边旋转一周形成的曲面围成的几何体是圆锥2.点是角终边上一点,则的值为()A. B. C. D.3.若,则的最小值为()A. B. C.3 D.24.己知的周长为,内切圆的半径为,,则的值为()A. B. C. D.5.已知圆柱的侧面展开图是一个边长为的正方形,则这个圆柱的体积是()A. B. C. D.6.一支田径队有男运动员560人,女运动员420人,为了解运动员的健康情况,从男运动员中任意抽取16人,从女生中任意抽取12人进行调查.这种抽样方法是()A.简单随机抽样法 B.抽签法C.随机数表法 D.分层抽样法7.已知是不同的直线,是不同的平面,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则8.在中,角,,的对边分别是,,,若,则()A. B. C. D.9.若一个正四棱锥的侧棱和底面边长相等,则该正四棱锥的侧棱和底面所成的角为()A.30° B.45° C.60° D.90°10.在中,,则是()A.等腰直角三角形 B.等腰或直角三角形 C.等腰三角形 D.直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.“”是“数列依次成等差数列”的______条件(填“充要”,“充分非必要”,“必要非充分”,“既不充分也不必要”).12.若等比数列的各项均为正数,且,则等于__________.13.设等比数列的公比,前项和为,则.14.已知,,若,则的取值范围是__________.15.已知,,,,则________.16.已知向量与的夹角为,且,;则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆M的圆心在直线上,直线与圆M相切于点.(1)求圆M的标准方程;(2)已知过点且斜率为的直线l与圆M交于不同的两点A、B,而且满足,求直线l的方程.18.如图.在四棱锥中,,,平面ABCD,且.,,M、N分别为棱PC,PB的中点.(1)证明:A,D,M,N四点共面,且平面ADMN;(2)求直线BD与平面ADMN所成角的正弦值.19.在中,角A,B,C的对边分别为a,b,c,若,.(1)求角A的大小;(2)若,求的周长.20.遇龙塔建于明代万历年间,简体砖石结构,屹立于永州市城北潇水东岸,为湖南省重点文物保护单位之一.游客乘船进行观光,到达潇水河河面的处时测得塔顶在北偏东45°的方向上,然后向正北方向行驶后到达处,测得此塔顶在南偏东的方向上,仰角为,且,若塔底与河面在同一水平面上,求此塔的高度.21.李克强总理在2018年政府工作报告指出,要加快建设创新型国家,把握世界新一轮科技革命和产业变革大势,深入实施创新驱动发展战略,不断增强经济创新力和竞争力.某手机生产企业积极响应政府号召,大力研发新产品,争创世界名牌.为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到一组销售数据,如表所示:单价(千元)销量(百件)已知.(1)若变量具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程;(2)用(1)中所求的线性回归方程得到与对应的产品销量的估计值.(参考公式:线性回归方程中的估计值分别为)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据旋转体的定义与性质,对选项中的命题分析、判断正误即可.【详解】A.圆柱的侧面展开图是一个矩形,正确;B.∵同一个圆锥的母线长相等,∴圆锥过轴的截面是一个等腰三角形,正确;C.根据平行于圆台底面的平面截圆台截面的性质可知:截面是圆面正确;D.直角三角形绕它的一条直角边旋转一周形成的曲面围成的几何体是圆锥,而直角三角形绕它的斜边旋转一周形成的曲面围成的几何体是两个对底面的两个圆锥,因此D不正确.故选:D.【点睛】本题考查了命题的真假判断,解题的关键是理解旋转体的定义与性质的应用问题,属于基础题.2、A【解析】

利用三角函数的定义求出的值,然后利用诱导公式可求出的值.【详解】由三角函数的定义可得,由诱导公式可得.故选A.【点睛】本题考查三角函数的定义,同时也考查了利用诱导公式求值,在利用诱导公式求值时,充分理解“奇变偶不变,符号看象限”这个规律,考查计算能力,属于基础题.3、A【解析】

由题意知,,,再由,进而利用基本不等式求最小值即可.【详解】由题意,,因为,所以,,所以,当且仅当,即时,取等号.故选:A.【点睛】本题考查利用基本不等式求最值,考查学生的计算求解能力,属于基础题.4、C【解析】

根据的周长为,内切圆的半径为,求得,再利用正弦定理,得到,然后代入余弦定理,化简得到求解.【详解】因为的周长为,内切圆的半径为,所以,又因为,所以.由余弦定理得:,,所以,所以,即,因为A为内角,所以,所以.故选:C【点睛】本题主要考查了正弦定理和余弦定理的应用,还考查了运算求解的能力,属于中档题.5、A【解析】

由已知易得圆柱的高为,底面圆周长为,求出半径进而求得底面圆半径即可求出圆柱体积。【详解】底面圆周长,,所以故选:A【点睛】此题考查圆柱的侧面展开为长方形,长为底面圆周长,宽为圆柱高,属于简单题目。6、D【解析】

若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样【详解】总体由男生和女生组成,比例为560:420=4:1,所抽取的比例也是16:12=4:1.故选D.【点睛】本小题主要考查抽样方法,当总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样,属基本题.7、D【解析】

由线面平行的判定定理即可判断A;由线面垂直的判定定理可判断B;由面面垂直的性质可判断C;由空间中垂直于同一条直线的两平面平行可判断D.【详解】对于A选项,加上条件“”结论才成立;对于B选项,加上条件“直线和相交”结论才成立;对于C选项,加上条件“”结论才成立.故选:D【点睛】本题考查空间直线与平面的位置关系,涉及线面平行的判定、线面垂直的判定、面面垂直的性质,属于基础题.8、D【解析】

由题意,再由余弦定理可求出,即可求出答案.【详解】由题意,,设,由余弦定理可得:,则.故选D.【点睛】本题考查了正、余弦定理的应用,考查了计算能力,属于中档题.9、B【解析】

正四棱锥,连接底面对角线,在中,为侧棱与地面所成角,通过边的关系得到答案.【详解】正四棱锥,连接底面对角线,,易知为等腰直角三角形.中点为,又正四棱锥知:底面即为所求角为,答案为B【点睛】本题考查了线面夹角的计算,意在考察学生的计算能力和空间想象力.10、D【解析】

先由可得,然后利用与三角函数的和差公式可推出,从而得到是直角三角形【详解】因为,所以所以因为所以即所以所以因为,所以因为,所以,即是直角三角形故选:D【点睛】要判断三角形的形状,应围绕三角形的边角关系进行思考,主要有以下两条途径:①角化边:把已知条件转化为只含边的关系,通过因式分解、配方等得到边的对应关系,从而判断三角形形状,②边化角:把已知条件转化为内角的三角函数间的关系,通过三角恒等变换,得出内角的关系,从而判断三角形的形状.二、填空题:本大题共6小题,每小题5分,共30分。11、必要非充分【解析】

通过等差数列的下标公式,得到必要条件,通过举特例证明非充分条件,从而得到答案.【详解】因为数列依次成等差数列,所以根据等差数列下标公式,可得,当,时,满足,但不能得到数列依次成等差数列所以综上,“”是“数列依次成等差数列”的必要非充分条件.故答案为:必要非充分.【点睛】本题考查必要非充分条件的证明,等差数列通项的性质,属于简单题.12、50【解析】由题意可得,=,填50.13、15【解析】分析:运用等比数列的前n项和公式与数列通项公式即可得出的值.详解:数列为等比数列,故答案为15.点睛:本题考查了等比数列的通项公式与前n项和公式,考查学生对基本概念的掌握能力与计算能力.14、【解析】数形结合法,注意y=,y≠0等价于x2+y2=9(y>0),它表示的图形是圆x2+y2=9在x轴之上的部分(如图所示).结合图形不难求得,当-3<b≤3时,直线y=x+b与半圆x2+y2=9(y>0)有公共点.15、【解析】

根据已知角的范围分别求出,,利用整体代换即可求解.【详解】,,,所以,,,,所以,=故答案为:【点睛】此题考查三角函数给值求值的问题,关键在于弄清角的范围,准确得出三角函数值,对所求的角进行合理变形,用已知角表示未知角.16、【解析】

已知向量与的夹角为,则,已知模长和夹角代入式子即可得到结果为故答案为1.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】

(1)设圆心坐标为,由圆的性质可得,再求解即可;(2)设,,则等价于,再利用韦达定理求解即可.【详解】解:(1)由圆M的圆心在直线上,设圆心坐标为,又直线与圆M相切于点,则,解得:,即圆心坐标,半径,即圆M的标准方程为;(2)由题意可得直线l的方程为,联立,消整理可得,则,即,又,则恒成立,设,,则由题意有,则,,又,则,则,即,整理得,解得或,即直线l的方程为或,即或.【点睛】本题考查了圆的标准方程的求法,重点考查了直线与圆的位置关系,属中档题.18、(1)证明见解析;(2)【解析】

(1)先证,再证,即可得证;要证平面ADMN,可通过求证PB垂直于ADMN中的两条交线来证明(2)求直线BD与平面ADMN所成角,需要找出BD在平面ADMN的射影,可通过三垂线定理去进行证明【详解】解:(1)证明因为M,N分别为PC,PB的中点,所以;又因为,所以.从而A,D,M,N四点共面;因为平面ABCD,平面ABCD.所以,又因为,,所以平面PAB,从而,因为,且N为PB的中点,所以;又因为,所以平面ADMN;(2)如图,连结DN;由(1)知平面ADMN,所以,DN为直线BD在平面ADMN内的射影,且,所以,即为直线BD与平面ADMN所成的角:在直角梯形ABCD内,过C作于H,则四边形ABCH为矩形;,在中,;所以,,,在中,,,,所以.综上,直线BD与平面ADMN所成角的正弦值为.【点睛】本题考查了线面垂直的判定定理,考查了线面角的求解方法,考查了运算能力及空间想象能力,属于中档题.19、(1);(2)【解析】

(1)根据三角形面积公式,结合平面向量数量积定义,分别表示出,联立即可求得,进而得的值.(2)由,结合余弦定理即可表示出,由(1)可得.即可联立表示出,进而求得周长.【详解】(1)因为,所以,则而,可得,所以即化简可得所以;(2)因为,所以由余弦定理可得,即,由(1)知,则,所以,所以的周长为.【点睛】本题考查了三角形面积公式的应用,余弦定理解三角形,平面向量数量积的定义及应用,属于中档题.20、【解析】

根据正弦定理求得,然后在直角三角形中求得,即可得到答案.【详解】由题意,在中,,故又,故由正弦定理得:,解得,因为,所以,所以.【点睛】本题主要考查了解三角形的实际应用问题,其

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论