版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省东阳市东阳中学高一下数学期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角所对的边分别为,若,则此三角形()A.无解 B.有一解 C.有两解 D.解的个数不确定2.若函数的图象上所有的点向右平移个单位长度后得到的函数图象关于对称,则的值为A. B. C. D.3.已知是偶函数,且时.若时,的最大值为,最小值为,则()A.2 B.1 C.3 D.4.在中,内角的对边分别为,若,那么()A. B. C. D.5.某工厂对一批新产品的长度(单位:)进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为()A.20,22.5 B.22.5,25 C.22.5,22.75 D.22.75,22.756.下面的程序运行后,输出的值是()A.90 B.29 C.13 D.547.如图所示的阴影部分是由轴及曲线围成,在矩形区域内随机取一点,则该点取自阴影部分的概率是()A. B. C. D.8.数列中,若,,则()A.29 B.2563 C.2569 D.25579.法国学者贝特朗发现,在研究事件A“在半径为1的圆内随机地取一条弦,其长度超过圆内接等边三角形的边长3”的概率的过程中,基于对“随机地取一条弦”的含义的的不同理解,事件A的概率PA存在不同的容案该问题被称为贝特朗悖论现给出种解释:若固定弦的一个端点,另个端点在圆周上随机选取,则PA.12 B.13 C.110.已知随机事件和互斥,且,.则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,且,则___________.12.如图,已知,,任意点关于点的对称点为,点关于点的对称点为,则向量_______(用,表示向量)13.已知过两点,的直线的倾斜角是,则______.14.无限循环小数化成最简分数为________15.不等式的解集为_________.16.已知,,若,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知分别是内角的对边,.(1)若,求(2)若,且求的面积.18.如图,正方体棱长为,连接,,,,,,得到一个三棱锥,求:(1)三棱锥的表面积与正方体表面积的比值;(2)三棱锥的体积.19.设全集是实数集,集合,.(1)若,求实数的取值范围;(2)若,求.20.已知函数,.(1)求函数在上的单调递增区间;(2)在中,内角、、所对边的长分别是,若,,,求的面积的值.21.设函数f(x)=x(1)当a=2时,函数f(x)的图像经过点(1,a+1),试求m的值,并写出(不必证明)f(x)的单调递减区间;(2)设a=-1,h(x)+x⋅f(x)=0,g(x)=2cos(x-π3),若对于任意的s∈[1,2],总存在t∈[0,π]
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
利用正弦定理求,与比较的大小,判断B能否取相应的锐角或钝角.【详解】由及正弦定理,得,,B可取锐角;当B为钝角时,,由正弦函数在递减,,可取.故选C.【点睛】本题考查正弦定理,解三角形中何时无解、一解、两解的条件判断,属于中档题.2、C【解析】
先由题意求出平移后的函数解析式,再由对称中心,即可求出结果.【详解】函数的图象上所有的点向右平移个单位长度后,可得函数的图像,又函数的图象关于对称,,,故,又,时,.故选C.【点睛】本题主要考查由平移后的函数性质求参数的问题,熟记正弦函数的对称性,以及函数的平移原则即可,属于常考题型.3、B【解析】
根据函数的对称性得到原题转化为直接求的最大和最小值即可.【详解】因为函数是偶函数,函数图像关于y轴对称,故得到时,的最大值和最小值,与时的最大值和最小值是相同的,故直接求的最大和最小值即可;根据对勾函数的单调性得到函数的最小值为,,故最大值为,此时故答案为:B.【点睛】这个题目考查了函数的奇偶性和单调性的应用,属于基础题。对于函数的奇偶性,主要是体现函数的对称性,这样可以根据对称性得到函数在对称区间上的函数值的关系,使得问题简化.4、B【解析】
化简,再利用余弦定理求解即可.【详解】.故.又,故.故选:B【点睛】本题主要考查了余弦定理求解三角形的问题,属于基础题.5、C【解析】
根据平均数的定义即可求出.根据频率分布直方图中,中位数的左右两边频率相等,列出等式,求出中位数即可.【详解】:根据频率分布直方图,得平均数为1(12.1×0.02+17.1×0.04+22.1×0.08+27.1×0.03+32.1×0.03)=22.71,∵0.02×1+0.04×1=0.3<0.1,0.3+0.08×1=0.7>0.1;∴中位数应在20~21内,设中位数为x,则0.3+(x﹣20)×0.08=0.1,解得x=22.1;∴这批产品的中位数是22.1.故选C.【点睛】本题考查了利用频率分布直方图求数据的中位数平均数的应用问题,是基础题目.6、D【解析】
根据程序语言的作用,模拟程序的运行结果,即可得到答案.【详解】模拟程序的运行,可得,执行循环体,,执行循环体,,执行循环体,,执行循环体,,退出循环,输出的值为1.故选:D.【点睛】本题考查利用模拟程序执行过程求输出结果,考查逻辑推理能力和运算求解能力,属于基础题.7、A【解析】,所以,故选A。8、D【解析】
利用递推关系,构造等比数列,进而求得的表达式,即可求出,也就可以得到的值。【详解】数列中,若,,可得,所以是等比数列,公比为2,首项为5,所以,.【点睛】本题主要考查数列的通项公式的求法——构造法。利用递推关系,选择合适的求解方法是解决问题的关键,常见的数列的通项公式的求法有:公式法,累加法,累乘法,构造法,取倒数法等。9、B【解析】
由几何概型中的角度型得:P(A)=2π【详解】设固定弦的一个端点为A,则另一个端点在圆周上BC劣弧上随机选取即可满足题意,则P(A)=2π故选:B.【点睛】本题考查了几何概型中的角度型,属于基础题.10、D【解析】
根据互斥事件的概率公式可求得,利用对立事件概率公式求得结果.【详解】与互斥本题正确选项:【点睛】本题考查概率中的互斥事件、对立事件概率公式的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
把平方,将代入,化简即可得结果.【详解】因为,所以,,故答案为.【点睛】本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).12、【解析】
先求得,然后根据中位线的性质,求得.【详解】依题意,由于分别是线段的中点,故.【点睛】本小题主要考查平面向量减法运算,考查三角形中位线,属于基础题.13、【解析】
由两点求斜率公式及斜率等于倾斜角的正切值列式求解.【详解】解:由已知可得:,即,则.故答案为.【点睛】本题考查直线的斜率,考查直线倾斜角与斜率的关系,是基础题.14、【解析】
利用无穷等比数列求和的方法即可.【详解】.故答案为:【点睛】本题主要考查了无穷等比数列的求和问题,属于基础题型.15、【解析】
利用两个数的商是正数等价于两个数同号;将已知的分式不等式转化为整式不等式,求出解集.【详解】同解于解得或故答案为:【点睛】本题考查解分式不等式,利用等价变形转化为整式不等式是解题的关键.16、【解析】
首先令,分别把解出来,再利用整体换元的思想即可解决.【详解】令所以令,所以所以【点睛】本题主要考查了整体换元的思想以及对数之间的运算和公式法解一元二次方程.整体换元的思想是高中的一个重点,也是高考常考的内容需重点掌握.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)1【解析】试题分析:(1)由,结合正弦定理可得:,再利用余弦定理即可得出(2)利用(1)及勾股定理可得c,再利用三角形面积计算公式即可得出试题解析:(1)由题设及正弦定理可得又,可得由余弦定理可得(2)由(1)知因为,由勾股定理得故,得所以的面积为1考点:正弦定理,余弦定理解三角形18、(1);(2)【解析】试题分析:(1)求出三棱锥的棱长为,即可求出三棱锥的表面积与正方体表面积的比值;(2)利用割补法,即可求出三棱锥的体积.试题解析:(1)正方体的棱长为,则三棱锥的棱长为,表面积为,正方体表面积为,∴三棱锥的表面积与正方体表面积的比值为(2)三棱锥的体积为19、(1)或(2)当时,;当时,【解析】
(1)若,则或,解得实数的取值范围;(2)若则,结合交集定义,分类讨论可得.【详解】解:(1)若,则或,即或.所以的取值范围为或.(2)∵,则且,∴.当时,;当时,.【点睛】本题考查集合的交集运算,元素与元素的关系,分类讨论思想,属于中档题.20、(1),;(2).【解析】
(1)首先把化成的型式,再根据三角函的单调性即可解决(2)根据(1)结果把代入可得A的大小,从而计算出B的大小,根据正弦定理以及面积公式即可解决。【详解】(1)因为,由,,得,,又,所以或,所以函数在上的递增区间为:,;(2)因为,∴,∴,∴,,∴,,∵,∴.∴,在三角形中由正弦定理得,∴,.【点睛】本题主要考查了三角函数问题以及解三角形问题。三角函数问题常考周期、单调性最值等,在解三角形中长考的有正弦定理、余弦定理以及面积公式。21、(1)递减区间为[-2,0)和(0,2【解析】
(1)将点(1,3)代入函数f(x)即可求出m,根据函数的解析式写出单调递减区间即可(2)当a=-1时,写出函数h(x),由题意知h(s)的值域是g(t)值域的子集,即可求出.【详解】(1)因为函数f(x)的图像经过点(1,a+1),且a=2所以f(1)=1+m+2=3,解得m=0.∴ ∴f(x)的单调递减区间为[-2,0)(2)当a=-1时,f(x)=x-1∴ ∵g(x)=2cos∴ t∈[0,π]时,g(t)∈[-1,2]由对于任意的s∈[1,2],总存在t∈[0,π],使得h
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华师大版初中科学1.3噪声
- 华师大版初中科学银河系(17课件)
- 媒介与宣传管理制度
- 第一节SIS系统讲义
- 算法设计与分析 课件 4.6-分治法 - 典型应用 - 快速排序
- 2024年汉中客运资格证考试题库下载
- 2024年青海驾校资格证模拟考试题
- 2024年合肥考客运资格证要考几科
- 2024年毕节客运考试题库
- 新高考I卷(含听力)03-2024年高考英语第一次调研全真模拟考试(原卷版)
- 2016雕塑工程计价定额(共10页)
- 液压油缸项目建设用地申请报告(范文参考)
- 实验室人员比对试验结果小结与分析
- 七年级上册历史时间轴
- 个人寿险业务人员基本管理办法(试行2012A版)
- 口风琴结题报告-复件(1)
- 赶工措施费用计算(精编版)
- 《千字文》全文(带拼音)
- 金属断裂机理
- 预制装配式结构及预制构件工程吊装施工工艺
- 中国联通swot分析
评论
0/150
提交评论