四川省遂宁市射洪县2023-2024学年数学高一下期末学业质量监测模拟试题含解析_第1页
四川省遂宁市射洪县2023-2024学年数学高一下期末学业质量监测模拟试题含解析_第2页
四川省遂宁市射洪县2023-2024学年数学高一下期末学业质量监测模拟试题含解析_第3页
四川省遂宁市射洪县2023-2024学年数学高一下期末学业质量监测模拟试题含解析_第4页
四川省遂宁市射洪县2023-2024学年数学高一下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省遂宁市射洪县2023-2024学年数学高一下期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.总体由编号为01,02,…,60的60个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第8列和第9列数字开始由左至右选取两个数字,则选出的第5个个体的编号为()5044664429670658036980342718836146422391674325745883110330208353122847736305A.42 B.36 C.22 D.142.若将函数的图象向右平移个单位后,所得图象对应的函数为()A. B. C. D.3.连续掷两次骰子,分别得到的点数作为点的坐标,则点落在圆内的概率为A. B. C. D.4.若正实数x,y满足不等式,则的取值范围是()A. B. C. D.5.在中,已知三个内角为,,满足,则().A. B.C. D.6.设向量,且,则实数的值为()A. B. C. D.7.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为()A.80 B.40 C.60 D.208.圆与圆的位置关系是()A.相切 B.内含 C.相离 D.相交9.用数学归纳法证明n+1n+2⋯n+n=-2A.2k+1 B.22k+1 C.2k+1k+110.在中,角的对边分别为,且.若为钝角,,则的面积为()A. B. C. D.5二、填空题:本大题共6小题,每小题5分,共30分。11.若方程表示圆,则实数的取值范围是______.12.已知向量,.若向量与垂直,则________.13.在中,角,,所对的边分别为,,,若,则角最大值为______.14.已知函数的最小正周期为,且的图象过点,则方程所有解的和为________.15.已知向量与的夹角为,且,;则__________.16.一艘海轮从出发,沿北偏东方向航行后到达海岛,然后从出发沿北偏东方向航行后到达海岛,如果下次直接从沿北偏东方向到达,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.中,角的对边分别为,且.(I)求角的大小;(II)若,求的最小值.18.如图所示,在梯形中,∥,⊥,,⊥平面,⊥.(1)证明:⊥平面;(2)若,求点到平面的距离.19.在直角坐标系中,点,圆的圆心为,半径为2.(Ⅰ)若,直线经过点交圆于、两点,且,求直线的方程;(Ⅱ)若圆上存在点满足,求实数的取值范围.20.如图,已知中,.设,,它的内接正方形的一边在斜边上,、分别在、上.假设的面积为,正方形的面积为.(Ⅰ)用表示的面积和正方形的面积;(Ⅱ)设,试求的最大值,并判断此时的形状.21.已知数列满足,,其中实数.(I)求证:数列是递增数列;(II)当时.(i)求证:;(ii)若,设数列的前项和为,求整数的值,使得最小.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

通过随机数表的相关运算即可得到答案.【详解】随机数表第1行的第8列和第9列数字为42,由左至右选取两个数字依次为42,36,03,14,22,选出的第5个个体的编号为22,故选C.【点睛】本题主要考查随机数法,按照规则进行即可,难度较小.2、B【解析】

根据正弦型函数的图象平移规律计算即可.【详解】.故选:B.【点睛】本题考查三角函数图象的平移变化,考查对基本知识的理解和掌握,属于基础题.3、B【解析】

由抛掷两枚骰子得到点的坐标共有36种,再利用列举法求得点落在圆内所包含的基本事件的个数,利用古典概型的概率计算公式,即可求解.【详解】由题意知,试验发生包含的事件是连续掷两次骰子分别得到的点数作为点P的坐标,共有种结果,而满足条件的事件是点P落在圆内,列举出落在圆内的情况:(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2),共有8种结果,根据古典概型概率公式,可得,故选B.【点睛】本题主要考查的是古典概型及其概率计算公式.,属于基础题.解题时要准确理解题意,先要判断该概率模型是不是古典概型,正确找出随机事件A包含的基本事件的个数和试验中基本事件的总数,令古典概型及其概率的计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4、B【解析】

试题分析:由正实数满足不等式,得到如下图阴影所示的区域:当过点时,,当过点时,,所以的取值范围是.考点:线性规划问题.5、C【解析】

利用正弦定理、余弦定理即可得出.【详解】由正弦定理,以及,得,不妨取,则,又,.故选:C.【点睛】本题主要考查了正弦定理,余弦定理在解三角形中应用,考查了转化思想,属于基础题.6、D【解析】

根据向量垂直时数量积为0,列方程求出m的值.【详解】向量,(m+1,﹣m),当⊥时,•0,即﹣(m+1)﹣2m=0,解得m.故选D.【点睛】本题考查了平面向量的数量积的坐标运算,考查了向量垂直的条件转化,是基础题.7、B【解析】试题分析:方法一:由条件可知三年级的同学的人数为,所以应抽人数为,方法二:由条件可知样本中一、二、三、四年级的人数比为4∶3∶2∶1,因此应抽取三年级的学生人数为,答案选B.考点:分层抽样8、D【解析】

写出两圆的圆心,根据两点间距离公式求得两圆心的距离,发现,所以两圆相交。比较三者之间大小判断位置关系。【详解】两圆的圆心分别为:,,半径分别为:,,两圆心距为:,所以,两圆相交,选D。【点睛】通过比较圆心距和半径和与半径差直接的关系判断,即比较三者之间大小。9、B【解析】

要分清起止项,以及相邻两项的关系,由此即可分清增加的代数式。【详解】当n=k时,左边=k+1当n=k+1时,左边====k+1∴从k到k+1,左边需要增乘的代数式为22k+1【点睛】本题主要考查学生如何理解数学归纳法中的递推关系。10、B【解析】

先由正弦定理求出c的值,再由C角为锐角求出C角的正余弦值,利用角C的余弦公式求出b的值,带入,及可求出面积.【详解】因为,,所以.又因为,且为锐角,所以,.由余弦定理得:,解得,所以.故选B.【点睛】本题考查利用正余弦定理解三角形,三角形的面积公式,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】

把圆的一般方程化为圆的标准方程,得出表示圆的条件,即可求解,得到答案.【详解】由题意,方程可化为,方程表示圆,则满足,解得.【点睛】本题主要考查了圆的一般方程与圆的标准方程的应用,其中熟记圆的一般方程与圆的标准方程的互化是解答的关键,着重考查了推理与运算能力,属于基础.12、7【解析】

由与垂直,则数量积为0,求出对应的坐标,计算即可.【详解】,,,又与垂直,故,解得,解得.故答案为:7.【点睛】本题考查通过向量数量积求参数的值.13、【解析】

根据余弦定理列式,再根据基本不等式求最值【详解】因为所以角最大值为【点睛】本题考查余弦定理以及利用基本不等式求最值,考查基本分析求解能力,属中档题14、【解析】

由周期求出,由图象的所过点的坐标求得,【详解】由题意,又,且,∴,,由得或,又,,∴或,或,两根之和为.故答案为:.【点睛】本题考查求三角函数的解析式,考查解三角方程.掌握正切函数的性质是解题关键.15、【解析】

已知向量与的夹角为,则,已知模长和夹角代入式子即可得到结果为故答案为1.16、【解析】

首先根据余弦定理求出,在根据正弦定理求出,即可求出【详解】有题知.所以.在中,,即,解得.所以,故答案为:【点睛】本题主要考查正弦定理和余弦定理的实际应用,熟练掌握公式为解题的关键,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I);(II)最小值为2.【解析】

(I),化简即得C的值;(II)【详解】(I)因为,所以;(II)由余弦定理可得,,因为,所以,当且仅当的最小值为2.【点睛】本题主要考查正弦定理余弦定理解三角形和基本不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1)见解析(2)【解析】

(1)通过⊥,⊥来证明;(2)根据等体积法求解.【详解】(1)证明:∵⊥平面,平面,∴⊥.又⊥,,平面,平面,∴⊥平面.(2)由已知得,所以且由(1)可知,由勾股定理得∵平面∴=,且∴,由,得∴即点到平面的距离为【点睛】本题考查线面垂直与点到平面的距离.线面垂直的证明要转化为线线垂直;点到平面的距离常规方法是作出垂线段求解,此题根据等体积法能简化计算.19、(Ⅰ)或.(Ⅱ)【解析】

(Ⅰ)勾股定理求出圆心到直线的距离d,利用d=1以直线的斜率存在、不存在两种情况进行分类讨论;(Ⅱ)设,由求出x、y满足的关系式,可得点在圆上,推出圆与圆有公共点,所以,列出不等式求解即可.【详解】(Ⅰ)当,圆心为,圆的方程为,设圆心到直线的距离为,则.①若直线的斜率存在,设直线的方程为,即,,解得,此时的方程为,即.②若直线的斜率不存在,直线的方程为,验证满足,符合题意.综上所述,直线的方程为或.(Ⅱ)设,则,于是由得,即,所以点在圆上,又点在圆上,故圆与圆有公共点,即,于是,解得,因此实数的取值范围是.【点睛】本题考查直线与圆的位置关系的综合应用,向量的数量积,根据圆与圆的位置关系求参数,属于中档题.20、(Ⅰ),;,(Ⅱ)最大值为;为等腰直角三角形【解析】

(Ⅰ)根据直角三角形,底面积乘高是面积;然后考虑正方形的边长,求出边长之后,即可表示正方形面积;(Ⅱ)化简的表达式,利用基本不等式求最值,注意取等号的条件.【详解】解:(Ⅰ)∵在中,∴,.∴∴,设正方形边长为,则,,∴.∴,∴,(Ⅱ)解:由(Ⅰ)可得,令,∵在区间上是减函数∴当时,取得最小值,即取得最大值。∴的最大值为此时∴为等腰直角三角形【点睛】(1)函数的实际问题中,不仅要根据条件列出函数解析式时,同时还要注意定义域;(2)求解函数的最值的时候,当取到最值时,一定要添加增加取等号的条件.21、(I)证明见解析;(II)(i)证明见解析;(ii).【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论