




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届辽宁省丹东第四中学高一下数学期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,边,,分别是角,,的对边,且满足,若,则的值为A. B. C. D.2.在中,,,则()A.或 B. C. D.3.已知正方体的个顶点中,有个为一侧面是等边三角形的正三棱锥的顶点,则这个正三棱锥与正方体的全面积之比为()A. B. C. D.4.集合,,则()A. B.C. D.5.若直线与函数的图象相邻的两个交点之间的距离为1,则函数图象的对称中心为()A. B. C. D.6.若,满足,则的最大值为().A. B. C. D.7.若变量满足约束条件则的最小值等于()A. B. C. D.28.若,则的最小值为()A. B. C. D.9.化简的结果是()A. B. C. D.10.已知两个等差数列,的前项和分别为,,若对任意的正整数,都有,则等于()A.1 B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在上,满足的的取值范围是______.12.已知直线与圆相交于,两点,则=______.13.已知数列:,,,,,,,,,,,,,,,,,则__________.14.一艘海轮从出发,沿北偏东方向航行后到达海岛,然后从出发沿北偏东方向航行后到达海岛,如果下次直接从沿北偏东方向到达,则______.15.__________.16.已知等差数列中,,,则该等差数列的公差的值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知中,角的对边分别为.已知,.(Ⅰ)求角的大小;(Ⅱ)设点满足,求线段长度的取值范围.18.已知函数.(1)求函数在上的最小值的表达式;(2)若函数在上有且只有一个零点,求的取值范围.19.如图,在直三棱柱中,,,是棱的中点.(1)求证:;(2)求证:.20.已知向量,.(1)当时,求的值;(2)设函数,已知在中,内角、、的对边分别为、、,若,,,求的取值范围.21.如图,三棱柱中,,D为AB上一点,且平面.(1)求证:;(2)若四边形是矩形,且平面平面ABC,直线与平面ABC所成角的正切值等于2,,,求三楼柱的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
利用正弦定理把题设等式中的边换成角的正弦,进而利用两角和公式化简整理可得的值,由可得的值【详解】在中,由正弦定理可得化为:即在中,,故,可得,即故选【点睛】本题以三角形为载体,主要考查了正弦定理,向量的数量积的运用,考查了两角和公式,考查了分析问题和解决问题的能力,属于中档题。2、C【解析】
由正弦定理计算即可。【详解】由题根据正弦定理可得即,解得,所以为或,又因为,所以为故选C.【点睛】本题考查正弦定理,属于简单题。3、A【解析】所求的全面积之比为:,故选A.4、B【解析】
求出中不等式的解集确定出,找出与的交集即可.【详解】解:由中不等式变形得:,解得:,即,,,故选:.【点睛】本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题.5、A【解析】
先计算周期得到,得到函数表达式,再根据中心对称公式得到答案.【详解】直线与函数的图象相邻的两个交点之间的距离为1则的对称中心横坐标为:对称中心为故答案选A【点睛】本题考查了函数的周期,对称中心,意在考查学生综合应用能力.6、D【解析】作出不等式组,所表示的平面区域,如图所示,当时,可行域为四边形内部,目标函数可化为,即,平移直线可知当直线经过点时,直线的截距最大,从而最大,此时,,当时,可行域为三角形,目标函数可化为,即,平移直线可知当直线经过点时,直线的截距最大,从而最大,,综上,的最大值为.故选.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.注意解答本题时不要忽视斜率不存在的情形.7、A【解析】
由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【详解】解:由变量x,y满足约束条件作出可行域如图,由图可知,最优解为A,联立,解得A(﹣1,).∴z=2x﹣y的最小值为2×(﹣1).故选A.【点睛】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.8、D【解析】
根据对数运算可求得且,,利用基本不等式可求得最小值.【详解】由得:且,(当且仅当时取等号)本题正确选项:【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够利用对数运算得到积的定值,属于基础题.9、D【解析】
直接利用同角三角函数基本关系式以及二倍角公式化简求值即可.【详解】.故选.【点睛】本题主要考查应用同角三角函数基本关系式和二倍角公式对三角函数的化简求值.10、B【解析】
利用等差数列的性质将化为同底的,再化简,将分子分母配凑成前n项和的形式,再利用题干条件,计算。【详解】∵等差数列,的前项和分别为,,对任意的正整数,都有,∴.故选B.【点睛】本题考查等差数列的性质的应用,属于中档题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由,结合三角函数线,即可求解,得到答案.【详解】如图所示,因为,所以满足的的取值范围为.【点睛】本题主要考查了特殊角的三角函数值,以及三角函数线的应用,着重考查了推理与运算能力,属于基础题.12、.【解析】
将圆的方程化为标准方程,由点到直线距离公式求得弦心距,再结合垂径定理即可求得.【详解】圆,变形可得所以圆心坐标为,半径直线,变形可得由点到直线距离公式可得弦心距为由垂径定理可知故答案为:【点睛】本题考查了直线与圆相交时的弦长求法,点到直线距离公式的应用及垂径定理的用法,属于基础题.13、【解析】
根据数列的规律和可知的取值为,则分母为;又为分母为的项中的第项,则分子为,从而得到结果.【详解】当时,;当时,的分母为:又的分子为:本题正确结果:【点睛】本题考查根据数列的规律求解数列中的项,关键是能够根据分子的变化特点确定的取值.14、【解析】
首先根据余弦定理求出,在根据正弦定理求出,即可求出【详解】有题知.所以.在中,,即,解得.所以,故答案为:【点睛】本题主要考查正弦定理和余弦定理的实际应用,熟练掌握公式为解题的关键,属于中档题.15、【解析】
利用诱导公式以及正弦差角公式化简式子,之后利用特殊角的三角函数值直接计算即可.【详解】.故答案为【点睛】该题考查的是有关三角函数化简求值问题,涉及到的知识点有诱导公式,差角正弦公式,特殊角的三角函数值,属于简单题目.16、【解析】
根据等差数列的通项公式即可求解【详解】故答案为:【点睛】本题考查等差通项基本量的求解,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(I)利用数量积的定义和三角形面积公式可求得,从而得角;(II)由得,平方后可求得,即中线长,结合可得最小值,从而得取值范围.【详解】(Ⅰ)因为,所以因为,所以得以两式相除得所以(Ⅱ)因为,所以因为,所以所以所以.当且仅当时取得等号所以线段长度的取值范围时.【点睛】本题考查平面向量的数量积,考查平面向量的线性运算、三角形面积公式,解题关键是把中线向量表示为,这样把线段长度(向量模)转化为向量的数量积.18、(1);(2).【解析】
(1)求出函数的对称轴方程,对实数分、、三种情况讨论,分析函数在区间上的单调性,进而可得出函数在区间上的最小值的表达式;(2)对函数分情况讨论:(i)方程在区间上有两个相等的实根;(ii)①方程在区间只有一根;(②;③.可得出关于实数的等式或不等式,即可解得实数的取值范围.【详解】(1),其对称轴为,当,即时,函数在区间上单调递减,;当,即时,函数在区间上单调递减,在区间上单调递增,;当时,即当时,函数在区间上单调递增,.综上所述:;(2)(i)若方程在上有两个相等的实数根,则,此时无解;(ii)若方程有两个不相等的实数根.①当只有一根在内时,,即,得;②当时,,方程化为,其根为,,满足题意;③当时,,方程化为,其根为,,满足题意.综上所述,的取值范围是.【点睛】本题考查二次函数在定区间上最值的计算,同时也考查了利用二次函数在区间上零点个数求参数,考查分类讨论思想的应用,属于中等题.19、(1)见详解;(2)见详解.【解析】
(1)连接AC1,设AC1∩A1C=O,连接OD,可求O为AC1的中点,D是棱AB的中点,利用中位线的性质可证OD∥BC1,根据线面平行的判断定理即可证明BC1∥平面A1CD.(2)由(1)可证平行四边形ACC1A1是菱形,由其性质可得AC1⊥A1C,利用线面垂直的性质可证AB⊥AA1,根据AB⊥AC,利用线面垂直的判定定理可证AB⊥平面ACC1A1,利用线面垂直的性质可证AB⊥A1C,又AC1⊥A1C,根据线面垂直的判定定理可证A1C⊥平面ABC1,利用线面垂直的性质即可证明BC1⊥A1C.【详解】(1)连接AC1,设AC1∩A1C=O,连接OD,在直三棱柱ABC﹣A1B1C1中,侧面ACC1A1是平行四边形,所以:O为AC1的中点,又因为:D是棱AB的中点,所以:OD∥BC1,又因为:BC1⊄平面A1CD,OD⊂平面A1CD,所以:BC1∥平面A1CD.(2)由(1)可知:侧面ACC1A1是平行四边形,因为:AC=AA1,所以:平行四边形ACC1A1是菱形,所以:AC1⊥A1C,在直三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,因为:AB⊂平面ABC,所以:AB⊥AA1,又因为:AB⊥AC,AC∩AA1=A,AC⊂平面ACC1A1,AA1⊂平面ACC1A1,所以:AB⊥平面ACC1A1,因为:A1C⊂平面ACC1A1,所以:AB⊥A1C,又因为:AC1⊥A1C,AB∩AC1=A,AB⊂平面ABC1,AC1⊂平面ABC1,所以:A1C⊥平面ABC1,因为:BC1⊂平面ABC1,所以:BC1⊥A1C.【点睛】本题主要考查了线面平行的判定,线面垂直的性质,线面垂直的判定,考查了空间想象能力和推理论证能力,属于中档题.20、(1);(2)【解析】
(1)由共线向量的坐标运算化简可得,将化切后代入即可(2)利用向量的坐标运算化简,利用正弦定理求,根据角的范围求值域即可.【详解】(1)∵,,且;∴,∴;∴;(2)∵;在中,由正弦定理得,∴,∴,或;又∵,∴,∴,∵,∴;∴,∴;即的取值范围是.【点睛】本题主要考查了向量数量积的坐标运算,三角恒等式,型函数的值域,属于中档题.21、(1)见详解;(2)【解析】
(1)连接交于点,连接,利用线面平行的性质定理可得,从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025陕西省安全员《C证》考试题库及答案
- 宿州学院《乌克兰语语法与写作》2023-2024学年第二学期期末试卷
- 广州南方学院《军训(含军事理论教育)》2023-2024学年第二学期期末试卷
- 正德职业技术学院《人工智能基础与应用A》2023-2024学年第二学期期末试卷
- 青海交通职业技术学院《写作(二)》2023-2024学年第二学期期末试卷
- 2024-2025学年陕西省安康市高新中学高二上学期12月月考历史试卷
- 周口职业技术学院《EDA技术及应用A》2023-2024学年第二学期期末试卷
- 延边大学《生态毒理学》2023-2024学年第二学期期末试卷
- 天津商务职业学院《物理有机化学选论》2023-2024学年第二学期期末试卷
- 黄河交通学院《药学分子生物学实验》2023-2024学年第二学期期末试卷
- 《儿童胃食管反流病》课件
- 阅读理解:如何找文章线索 课件
- 工程分包商履约情况与进度关联分析
- 英语倒装句课件(全面详细)
- 培训业务的竞争对手分析与对策
- 产品设计思维 课件 第3-5章 产品设计的问题思维、产品设计的功能思维、产品设计的形式思维
- 餐券模板完整
- 英语48个国际音标课件(单词带声、附有声国际音标图)
- 门机司机室更换施工方案
- 预制装配式钢筋混凝土排水检查井标准图集
- 评估胎儿健康的技术
评论
0/150
提交评论