版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省广元市朝天区五校联考中考联考数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正确的结论有()A.2个 B.3个 C.4个 D.5个2.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.23.对于反比例函数y=﹣2xA.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y24.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为()A.30° B.40° C.50° D.60°5.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,-1 B.1,-3 C.-3,1 D.-1,36.如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5° B.15° C.20° D.22.5°7.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次8.如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是()A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB9.如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则A、B之间的距离为()A.50m B.25m C.(50﹣)m D.(50﹣25)m10.2016的相反数是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为_____.12.在平面直角坐标系中,已知,A(2,0),C(0,﹣1),若P为线段OA上一动点,则CP+AP的最小值为_____.13.因式分解:a3﹣2a2b+ab2=_____.14.如图,已知抛物线与坐标轴分别交于A,B,C三点,在抛物线上找到一点D,使得∠DCB=∠ACO,则D点坐标为____________________.15.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2等_________.16.对角线互相平分且相等的四边形是()A.菱形 B.矩形 C.正方形 D.等腰梯形17.π﹣3的绝对值是_____.三、解答题(共7小题,满分69分)18.(10分)如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.判断直线CD和⊙O的位置关系,并说明理由.过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.19.(5分)先化简,再求值:,其中x=,y=.20.(8分)今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)21.(10分)如图,在矩形ABCD中,AB=3,AD=4,P沿射线BD运动,连接AP,将线段AP绕点P顺时针旋转90°得线段PQ.(1)当点Q落到AD上时,∠PAB=____°,PA=_____,长为_____;(2)当AP⊥BD时,记此时点P为P0,点Q为Q0,移动点P的位置,求∠QQ0D的大小;(3)在点P运动中,当以点Q为圆心,BP为半径的圆与直线BD相切时,求BP的长度;(4)点P在线段BD上,由B向D运动过程(包含B、D两点)中,求CQ的取值范围,直接写出结果.22.(10分)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求证:△ABP≌△CAQ;请判断△APQ是什么形状的三角形?试说明你的结论.23.(12分)如下表所示,有A、B两组数:第1个数第2个数第3个数第4个数……第9个数……第n个数A组﹣6﹣5﹣2……58……n2﹣2n﹣5B组14710……25……(1)A组第4个数是;用含n的代数式表示B组第n个数是,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明.24.(14分)如图,点C是线段BD的中点,AB∥EC,∠A=∠E.求证:AB=
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
①观察图象可知a<0,b>0,c>0,由此即可判定①;②当x=﹣1时,y=a﹣b+c由此可判定②;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,由此可判定③;④当x=3时函数值小于0,即y=9a+3b+c<0,且x=﹣=1,可得a=﹣,代入y=9a+3b+c<0即可判定④;⑤当x=1时,y的值最大.此时,y=a+b+c,当x=n时,y=an2+bn+c,由此即可判定⑤.【详解】①由图象可知:a<0,b>0,c>0,abc<0,故此选项错误;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,故此选项错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此选项正确.∴③④⑤正确.故选B.【点睛】本题主要考查了抛物线的图象与二次函数系数之间的关系,熟知抛物线的图象与二次函数系数之间的关系是解决本题的关键.2、D【解析】
根据“一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4”,结合根与系数的关系,分别列出关于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【详解】解:根据题意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1•x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故选D.【点睛】本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.3、D【解析】
根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A.k=−2<0,∴它的图象在第二、四象限,故本选项正确;B.k=−2<0,当x>0时,y随x的增大而增大,故本选项正确;C.∵-2D.若点A(x1,y1),B(x2,y2)都在图象上,,若x1<0<x2,则y2<y1,故本选项错误.故选:D.【点睛】考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.4、D【解析】如图,因为,∠1=30°,∠1+∠3=60°,所以∠3=30°,因为AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故选D.5、A【解析】
根据题意可得方程组,再解方程组即可.【详解】由题意得:,解得:,故选A.6、B【解析】
解:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=∠BOF=15°故选:B7、A【解析】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B错误;概率很小的事件也可能发生,故C错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;故选A.考点:随机事件.8、C【解析】
根据线段上的等量关系逐一判断即可.【详解】A、∵AD-CD=AC,∴此选项表示正确;B、∵AB+BC=AC,∴此选项表示正确;C、∵AB=CD,∴BD-AB=BD-CD,∴此选项表示不正确;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.9、C【解析】
如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得AB=MN=CM﹣CN,即可得到结论.【详解】如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AB=MN,AM=BN.在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).则AB=MN=(50﹣)m.故选C.【点睛】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.10、C【解析】根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.故选C.二、填空题(共7小题,每小题3分,满分21分)11、1.【解析】
根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题.【详解】解:∵四边形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴∵AO=OC,∴∵AO=OC,AM=MD=4,∴∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=1.故答案为:1.【点睛】本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.12、【解析】
可以取一点D(0,1),连接AD,作CN⊥AD于点N,PM⊥AD于点M,根据勾股定理可得AD=3,证明△APM∽△ADO得,PM=AP.当CP⊥AD时,CP+AP=CP+PM的值最小,最小值为CN的长.【详解】如图,取一点D(0,1),连接AD,作CN⊥AD于点N,PM⊥AD于点M,在Rt△AOD中,∵OA=2,OD=1,∴AD==3,∵∠PAM=∠DAO,∠AMP=∠AOD=90°,∴△APM∽△ADO,∴,即,∴PM=AP,∴PC+AP=PC+PM,∴当CP⊥AD时,CP+AP=CP+PM的值最小,最小值为CN的长.∵△CND∽△AOD,∴,即∴CN=.所以CP+AP的最小值为.故答案为:.【点睛】此题考查勾股定理,三角形相似的判定及性质,最短路径问题,如何找到AP的等量线段与线段CP相加是解题的关键,由此利用勾股定理、相似三角形做辅助线得到垂线段PM,使问题得解.13、a(a﹣b)1.【解析】【分析】先提公因式a,然后再利用完全平方公式进行分解即可.【详解】原式=a(a1﹣1ab+b1)=a(a﹣b)1,故答案为a(a﹣b)1.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14、(,),(-4,-5)【解析】
求出点A、B、C的坐标,当D在x轴下方时,设直线CD与x轴交于点E,由于∠DCB=∠ACO.所以tan∠DCB=tan∠ACO,从而可求出E的坐标,再求出CE的直线解析式,联立抛物线即可求出D的坐标,再由对称性即可求出D在x轴上方时的坐标.【详解】令y=0代入y=-x2-2x+3,∴x=-3或x=1,∴OA=1,OB=3,令x=0代入y=-x2-2x+3,∴y=3,∴OC=3,当点D在x轴下方时,∴设直线CD与x轴交于点E,过点E作EG⊥CB于点G,∵OB=OC,∴∠CBO=45°,∴BG=EG,OB=OC=3,∴由勾股定理可知:BC=3,设EG=x,∴CG=3-x,∵∠DCB=∠ACO.∴tan∠DCB=tan∠ACO=,∴,∴x=,∴BE=x=,∴OE=OB-BE=,∴E(-,0),设CE的解析式为y=mx+n,交抛物线于点D2,把C(0,3)和E(-,0)代入y=mx+n,∴,解得:.∴直线CE的解析式为:y=2x+3,联立解得:x=-4或x=0,∴D2的坐标为(-4,-5)设点E关于BC的对称点为F,连接FB,∴∠FBC=45°,∴FB⊥OB,∴FB=BE=,∴F(-3,)设CF的解析式为y=ax+b,把C(0,3)和(-3,)代入y=ax+b解得:,∴直线CF的解析式为:y=x+3,联立解得:x=0或x=-∴D1的坐标为(-,)故答案为(-,)或(-4,-5)【点睛】本题考查二次函数的综合问题,解题的关键是根据对称性求出相关点的坐标,利用直线解析式以及抛物线的解析式即可求出点D的坐标.15、【解析】试题解析:所以故答案为16、B【解析】
根据平行四边形的判定与矩形的判定定理,即可求得答案.【详解】∵对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,∴对角线相等且互相平分的四边形一定是矩形.故选B.【点睛】此题考查了平行四边形,矩形,菱形以及等腰梯形的判定定理.此题比较简单,解题的关键是熟记定理.17、π﹣1.【解析】
根据绝对值的性质即可解答.【详解】π﹣1的绝对值是π﹣1.故答案为π﹣1.【点睛】本题考查了绝对值的性质,熟练运用绝对值的性质是解决问题的关键.三、解答题(共7小题,满分69分)18、解:(1)直线CD和⊙O的位置关系是相切,理由见解析(2)BE=1.【解析】试题分析:(1)连接OD,可知由直径所对的圆周角是直角可得∠DAB+∠DBA=90°,再由∠CDA=∠CBD可得∠CDA+∠ADO=90°,从而得∠CDO=90°,根据切线的判定即可得出;(2)由已知利用勾股定理可求得DC的长,根据切线长定理有DE=EB,根据勾股定理得出方程,求出方程的解即可.试题解析:(1)直线CD和⊙O的位置关系是相切,理由是:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD⊥CE,∴直线CD是⊙O的切线,即直线CD和⊙O的位置关系是相切;(2)∵AC=2,⊙O的半径是3,∴OC=2+3=5,OD=3,在Rt△CDO中,由勾股定理得:CD=4,∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90°,设DE=EB=x,在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,则(4+x)2=x2+(5+3)2,解得:x=1,即BE=1.考点:1、切线的判定与性质;2、切线长定理;3、勾股定理;4、圆周角定理19、x+y,.【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入即可解答本题.试题解析:原式===x+y,当x=,y==2时,原式=﹣2+2=.20、(1)B点到直线CA的距离是75海里;(2)执法船从A到D航行了(75﹣25)海里.【解析】
(1)过点B作BH⊥CA交CA的延长线于点H,根据三角函数可求BH的长;(2)根据勾股定理可求DH,在Rt△ABH中,根据三角函数可求AH,进一步得到AD的长.【详解】解:(1)过点B作BH⊥CA交CA的延长线于点H,∵∠MBC=60°,∴∠CBA=30°,∵∠NAD=30°,∴∠BAC=120°,∴∠BCA=180°﹣∠BAC﹣∠CBA=30°,∴BH=BC×sin∠BCA=150×=75(海里).答:B点到直线CA的距离是75海里;(2)∵BD=75海里,BH=75海里,∴DH==75(海里),∵∠BAH=180°﹣∠BAC=60°,在Rt△ABH中,tan∠BAH==,∴AH=25,∴AD=DH﹣AH=(75﹣25)(海里).答:执法船从A到D航行了(75﹣25)海里.【点睛】本题主要考查了勾股定理的应用,解直角三角形的应用-方向角问题.能合理构造直角三角形,并利用方向角求得三角形内角的大小是解决此题的关键.21、(1)45,,π;(2)满足条件的∠QQ0D为45°或135°;(3)BP的长为或;(4)≤CQ≤7.【解析】
(1)由已知,可知△APQ为等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的长度;(2)分点Q在BD上方和下方的情况讨论求解即可.(3)分别讨论点Q在BD上方和下方的情况,利用切线性质,在由(2)用BP0表示BP,由射影定理计算即可;(4)由(2)可知,点Q在过点Qo,且与BD夹角为45°的线段EF上运动,有图形可知,当点Q运动到点E时,CQ最长为7,再由垂线段最短,应用面积法求CQ最小值.【详解】解:(1)如图,过点P做PE⊥AD于点E由已知,AP=PQ,∠APQ=90°∴△APQ为等腰直角三角形∴∠PAQ=∠PAB=45°设PE=x,则AE=x,DE=4﹣x∵PE∥AB∴△DEP∽△DAB∴=∴=解得x=∴PA=PE=∴弧AQ的长为•2π•=π.故答案为45,,π.(2)如图,过点Q做QF⊥BD于点F由∠APQ=90°,∴∠APP0+∠QPD=90°∵∠P0AP+∠APP0=90°∴∠QPD=∠P0AP∵AP=PQ∴△APP0≌△PQF∴AP0=PF,P0P=QF∵AP0=P0Q0∴Q0D=P0P∴QF=FQ0∴∠QQ0D=45°.当点Q在BD的右下方时,同理可得∠PQ0Q=45°,此时∠QQ0D=135°,综上所述,满足条件的∠QQ0D为45°或135°.(3)如图当点Q直线BD上方,当以点Q为圆心,BP为半径的圆与直线BD相切时过点Q做QF⊥BD于点F,则QF=BP由(2)可知,PP0=BP∴BP0=BP∵AB=3,AD=4∴BD=5∵△ABP0∽△DBA∴AB2=BP0•BD∴9=BP×5∴BP=同理,当点Q位于BD下方时,可求得BP=故BP的长为或(4)由(2)可知∠QQ0D=45°则如图,点Q在过点Q0,且与BD夹角为45°的线段EF上运动,当点P与点B重合时,点Q与点F重合,此时,CF=4﹣3=1当点P与点D重合时,点Q与点E重合,此时,CE=4+3=7∴EF===5过点C做CH⊥EF于点H由面积法可知CH===∴CQ的取值范围为:≤CQ≤7【点睛】本题是几何综合题,考查了三角形全等、勾股定理、切线性质以及三角形相似的相关知识,应用了分类讨论和数形结合的数学思想.22、(1)证明见解析;(2)△APQ是等边三角形.【解析】
(1)根据等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东酒店管理职业技术学院《食品微生物综合实训》2023-2024学年第一学期期末试卷
- 广东金融学院《公司金融含实验》2023-2024学年第一学期期末试卷
- 广东建设职业技术学院《技术及应用实验》2023-2024学年第一学期期末试卷
- 广东金融学院《小动物影像学》2023-2024学年第一学期期末试卷
- 网络文明培训课件
- 《能源互联网》课件
- 小班安全课件《狗狗来了》
- 厨具销售培训课件
- 共青科技职业学院《现代基础化学》2023-2024学年第一学期期末试卷
- 赣州师范高等专科学校《金融法》2023-2024学年第一学期期末试卷
- 广东省惠州市2022-2023学年高一上学期期末考试物理试题(含答案)
- 辽宁省丹东市2022-2023学年八年级上学期末数学期末试卷(含答案)
- 2023年政府项目申报专员年度总结及下一年规划
- 中学燃气锅炉事故应急预案
- 公租房续租申请书范文示例
- 小学各项制度执行情况总结
- 2023-2024学年江苏省徐州市九年级(上)期中物理试卷
- 搬运装卸服务外包投标方案(技术标)
- 急性肾衰竭属于中医学“癃闭”范畴5种常用中成药辨证施治方案
- 起重机械安全生产隐患课件
- 耕地资源与国家粮食安全高中地理湘教版(2019)选择性必修3
评论
0/150
提交评论