版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林省高中数学高一下期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在区间上任取两个实数,则满足的概率为()A. B. C. D.2.以圆形摩天轮的轴心为原点,水平方向为轴,在摩天轮所在的平面建立直角坐标系.设摩天轮的半径为米,把摩天轮上的一个吊篮看作一个点,起始时点在的终边上,绕按逆时针方向作匀速旋转运动,其角速度为(弧度/分),经过分钟后,到达,记点的横坐标为,则关于时间的函数图象为()A. B.C. D.3.干支纪年法是中国历法上自古以来就一直使用的纪年方法,主要方式是由十天干(甲、乙、丙、丁、戊、己、废、辛、壬、朵)和十二地支(子、丑、卯、辰、已、午、未、中、百、戊、)按顺序配对,周而复始,循环记录.如:1984年是甲子年,1985年是乙丑年,1994年是甲戌年,则数学王子高斯出生的1777年是干支纪年法中的()A.丁申年 B.丙寅年 C.丁酉年 D.戊辰年4.记动点P是棱长为1的正方体的对角线上一点,记.当为钝角时,则的取值范围为()A. B. C. D.5.设为数列的前项和,,则的值为()A. B. C. D.不确定6.甲、乙、丙三人随意坐下,乙不坐中间的概率为()A. B. C. D.7.设等差数列{an}的前n项和为Sn,a2+a4=6,则S5等于()A.10 B.12 C.15 D.308.某几何体的三视图如图所示(实线部分),若图中小正方形的边长均为1,则该几何体的体积是()A. B. C. D.9.已知点到直线的距离为1,则的值为()A. B. C. D.10.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的()A.5 B.4 C.3 D.9二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期是______.12.某地甲乙丙三所学校举行高三联考,三所学校参加联考的人数分别为200、300、400。现为了调查联考数学学科的成绩,采用分层抽样的方法在这三所学校中抽取一个样本,已知甲学校中抽取了40名学生的数学成绩,那么在丙学校中抽取的数学成绩人数为_________。13.已知数列满足则的最小值为__________.14.已知圆锥的顶点为,母线,所成角的余弦值为,与圆锥底面所成角为45°,若的面积为,则该圆锥的侧面积为__________.15.设为,的反函数,则的值域为______.16.方程在区间内解的个数是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当时,判断并证明函数的奇偶性;(2)当时,判断并证明函数在上的单调性.18.在中,内角的对边分别为,且.(1)求角;(2)若,,求的值.19.如图,已知平面平行于三棱锥的底面,等边所在的平面与底面垂直,且,设(1)求证:且;(2)求二面角的余弦值.20.在中,角A,B,C所对的边分别为a,b,c,.(1)求角C;(2)若,,求的面积.21.已知函数(1)求的最小正周期;(2)求的单调增区间;(3)若求函数的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:因为,在区间上任取两个实数,所以区域的面积为4,其中满足的平面区域面积为,故满足的概率为,选B.考点:本题主要考查几何概型概率计算.点评:简单题,几何概型概率的计算,关键是认清两个“几何度量”.2、B【解析】
根据题意,点的横坐标,由此通过特殊点的坐标,判断所给的图象是否满足条件,从而得出结论.【详解】根据题意可得,振幅,角速度,初相,点的横坐标,故当时,,当时,为的最大值,故选:B.【点睛】本题考查三角函数图象的实际应用以及余弦型函数图象的特征,其中,求出函数模型的解析式是解题的关键,考查推理能力,属于中等题.3、C【解析】
天干是以10为公差的等差数列,地支是以12为公差的等差数列,按照这个规律进行推理,即可得到结果.【详解】由题意,天干是以10为公差的等差数列,地支是以12为公差的等差数列,1994年是甲戌年,则1777的天干为丁,地支为酉,故选:C.【点睛】本题主要考查了等差数列的定义及等差数列的性质的应用,其中解答中认真审题,合理利用等差数列的定义,以及等差数列的性质求解是解答的关键,着重考查了推理与运算能力,属于基础题.4、B【解析】
建立空间直角坐标系,利用∠APC不是平角,可得∠APC为钝角等价于cos∠APC<0,即
,从而可求λ的取值范围.【详解】
由题设,建立如图所示的空间直角坐标系D-xyz,
则有A(1,0,0),B(1,1,0),C(0,1,0),(0,0,1)
∴
=(1,1,-1),∴
=(λ,λ,-λ),
∴
=
+
=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1)
=
+
=(-λ,-λ,λ)+(0,1,-1)=(-λ,1-λ,λ-1)
显然∠APC不是平角,所以∠APC为钝角等价于cos∠APC<0
∴
∴(1-λ)(-λ)+(-λ)(1-λ)+(λ-1)(λ-1)=(λ-1)(3λ-1)<0,得
<λ<1
因此,λ的取值范围是(
,1),故选B.
点评:本题考查了用空间向量求直线间的夹角,一元二次不等式的解法,属于中档题.5、C【解析】
令,由求出的值,再令时,由得出,两式相减可推出数列是等比数列,求出该数列的公比,再利用等比数列求和公式可求出的值.【详解】当时,,得;当时,由得出,两式相减得,可得.所以,数列是以为首项,以为公比的等比数列,因此,.故选:C.【点睛】本题考查利用前项和求数列通项,同时也考查了等比数列求和,在递推公式中涉及与时,可利用公式求解出,也可以转化为来求解,考查推理能力与计算能力,属于中等题.6、A【解析】甲、乙、丙三人随意坐下有种结果,乙坐中间则有,乙不坐中间有种情况,概率为,故选A.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.7、C【解析】因为等差数列{an}中,a2+a4=6,故a1+a5=6,所以S5===15.故选C.8、A【解析】
由三视图得出原几何体是由半个圆锥与半个圆柱组成的组合体,并且由三视图得出圆柱和圆锥的底面半径,圆锥的高,圆柱的高,再由圆柱和圆锥的体积公式得解.【详解】由三视图可知,几何体是由半个圆锥与半个圆柱组成的组合体,其中圆柱和圆锥的底面半径,圆锥的高,圆柱的高所以圆柱的体积,圆锥的体积,所以组合体的体积.故选B.【点睛】本题主要考查空间几何体的三视图和空间几何体圆柱和圆锥的体积,属于基础题.9、D【解析】
根据点到直线的距离公式列式求解参数即可.【详解】由题,,因为,故.故选:D【点睛】本题主要考查了点到线的距离公式求参数的问题,属于基础题.10、B【解析】
由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出,分析循环中各变量的变化情况,可得答案.【详解】当时,,,满足进行循环的条件;当时,,,满足进行循环的条件;当时,,,满足进行循环的条件;当时,,,不满足进行循环的条件;故选:B【点睛】本题主要考查程序框图,解题的关键是读懂流程图各个变量的变化情况,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由二倍角的余弦函数公式化简解析式可得,根据三角函数的周期性及其求法即可得解.【详解】.由周期公式可得:.故答案为【点睛】本题主要考查了二倍角的余弦函数公式的应用,考查了三角函数的周期性及其求法,属于基本知识的考查.12、80【解析】
由题意,求得甲乙丙三所学校抽样比为,再根据甲学校中抽取了40名学生的数学成绩,即可求解丙学校应抽取的人数,得到答案.【详解】由题意知,甲乙丙三所学校参加联考的人数分别为200、300、400,所以甲乙丙三所学校抽样比为,又由甲学校中抽取了40名学生的数学成绩,所以在丙学校应抽取人.【点睛】本题主要考查了分层抽样概念及其应用,其中解答中熟记分层抽样的概念,以及计算的方法是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解析】
先利用累加法求出an=1+n2﹣n,所以,设f(n),由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.【详解】解:∵an+1﹣an=2n,∴当n≥2时,an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+1=n2﹣n+1且对n=1也适合,所以an=n2﹣n+1.从而设f(n),令f′(n),则f(n)在上是单调递增,在上是递减的,因为n∈N+,所以当n=5或6时f(n)有最小值.又因为,,所以的最小值为故答案为【点睛】本题考查了利用递推公式求数列的通项公式,考查了累加法.还考查函数的思想,构造函数利用导数判断函数单调性.14、【解析】
分析:先根据三角形面积公式求出母线长,再根据母线与底面所成角得底面半径,最后根据圆锥侧面积公式求结果.详解:因为母线,所成角的余弦值为,所以母线,所成角的正弦值为,因为的面积为,设母线长为所以,因为与圆锥底面所成角为45°,所以底面半径为因此圆锥的侧面积为15、【解析】
求出原函数的值域可得出其反函数的定义域,取交集可得出函数的定义域,再由函数的单调性可求出该函数的值域.【详解】函数在上为增函数,则函数的值域为,所以,函数的定义域为.函数的定义域为,由于函数与函数单调性相同,可知,函数在上为增函数.当时,函数取得最小值;当时,函数取得最大值.因此,函数的值域为.故答案为:.【点睛】本题考查函数值域的求解,考查函数单调性的应用,明确两个互为反函数的两个函数具有相同的单调性是解题的关键,考查分析问题和解决问题的能力,属于中等题.16、4.【解析】分析:通过二倍角公式化简得到,进而推断或,进而求得结果.详解:,所以或,因为,所以或或或,故解的个数是4.点睛:该题考查的是有关方程解的个数问题,在解题的过程中,涉及到的知识点有正弦的倍角公式,方程的求解问题,注意一定不要两边除以,最后求得结果.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解析】
(1)将代入函数的解析式,利用函数的奇偶性定义来证明出函数的奇偶性;(2)将函数的解析式化为,然后利用函数单调性的定义证明出函数在上的单调性.【详解】(1)当时,,函数为上的奇函数.证明如下:,其定义域为,则,故函数为奇函数;(2)当时,函数在上单调递减.证明如下:,任取,则,又由,则,则有,即.因此,函数为上的减函数.【点睛】本题考查函数单调性与奇偶性的判定与证明,在利用定义证明函数的单调性与奇偶性时,要熟悉定义法证明函数奇偶性与单调性的基本步骤,考查逻辑推理能力与计算能力,属于中等题.18、(1)(2),【解析】
(1)由正弦定理可得,求得,即可解得角;(2)由余弦定理,列出方程,即可求解.【详解】(1)由题意知,由正弦定理可得,因为,则,所以,即,又由,所以.(2)由(1)知和,,由余弦定理,即,即,解得,所以.【点睛】本题主要考查了正弦定理、余弦定理的应用,其中解答中熟记三角形的正弦、余弦定理,准确计算是解答的挂念,着重考查了推理与计算能力,属于基础题.19、(1)证明见解析;(1)【解析】
(1)由平面∥平面,根据面面平行的性质定理,可得,,再由,得到.由平面平面,根据面面垂直的性质定理可得平面,从而有.(2)过作于,根据题意有平面,过D作于H,连结AH,由三垂线定理知,所以是二面角的平面角.然后在在中,在中,利用三角形相似求得再在求解.【详解】(1)证明:∵平面∥平面,∴,,∵,,又∵平面平面,平面平面,∴平面,平面,∴.(2)过作于,∵为正三角形,∴D为中点,∵平面∴又∵,∴平面.在等边三角形中,,过D作于H,连结AH,由三垂线定理知,∴是二面角的平面角.在中,~,,∴,,∴.【点睛】本题主要考查几何体中面面平行的性质定理和面面垂直的性质定理及二角面角问题,还考查了空间想象,抽象概括,推理论证的能力,属于中档题.20、(1);(2)【解析】
(1)利用正弦定理进行边化角,然后得到的值,从而得到;(2)根据余弦定理,得到关于的方程,从而得到,再根据面积公式,得到答案.【详解】(1)在中,根据正弦定理,由,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 暨南大学《口腔颌面外科学》2021-2022学年第一学期期末试卷
- 暨南大学《广告学》2021-2022学年第一学期期末试卷
- 济宁学院《商务英语视听说II》2021-2022学年第一学期期末试卷
- 采购员工作总结
- 2024年山东省济南市中考历史试卷含答案
- 2024年度二手房屋租赁合同协议(甲乙签字)3篇
- 文旅新媒体运营 课件 第8章 文旅新媒体运营技能
- 邮政快递安全培训
- 2024年保安服务公司年终总结
- 2024年大一上学期文艺部总结
- 香港中文大学在粤港澳大湾区的研究影响力和贡献 2024
- 民用航空货物邮件运输安全保卫规则培训考试专项试卷
- 2020年国家公务员考试申论真题(副省级)
- 广东省东莞市塘厦初级中学2024-2025学年九年级上学期期中考试英语试题
- 10《日月潭》第一课时说课稿-2024-2025学年二年级上册语文统编版
- 第五单元分数四则混合运算(单元测试)-2024-2025学年六年级上册数学 苏教版
- 2024年江苏公务员考试行测试题(A卷)
- 2023-2024学年广东省深圳市坪山区八年级(上)期末英语试卷
- 仓库管理培训资料
- 国家基本公共卫生服务学习知识竞赛试题(附答案)
- 各种珍禽购销合同模板
评论
0/150
提交评论