杨村第一中学2023-2024学年数学高一下期末考试模拟试题含解析_第1页
杨村第一中学2023-2024学年数学高一下期末考试模拟试题含解析_第2页
杨村第一中学2023-2024学年数学高一下期末考试模拟试题含解析_第3页
杨村第一中学2023-2024学年数学高一下期末考试模拟试题含解析_第4页
杨村第一中学2023-2024学年数学高一下期末考试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

杨村第一中学2023-2024学年数学高一下期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.点到直线(R)的距离的最大值为A. B. C.2 D.2.中国古代数学名著《算法统宗》中有这样一个问题:“三百七十里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行数里,请公仔细算相还”.其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问从第几天开始,走的路程少于30里()A.3 B.4 C.5 D.63.已知m,n是两条不同的直线,是三个不同的平面,则下列命题正确的是()A.若,,则 B.若,则C.若,,,则 D.若,,则4.若曲线表示椭圆,则的取值范围是()A. B. C. D.或5.在中,,点P是直线BN上一点,若,则实数m的值是()A.2 B. C. D.6.在中,已知a,b,c分别为,,所对的边,且a,b,c成等差数列,,,则()A. B. C. D.7.三角形的三条边长是连续的三个自然数,且最大角是最小角的2倍,则该三角形的最大边长为()A.4 B.5 C.6 D.78.下列各角中,与126°角终边相同的角是()A. B. C. D.9.已知圆C与直线和直线都相切,且圆心C在直线上,则圆C的方程是()A. B.C. D.10.在△ABC中,AB=,AC=1,,△ABC的面积为,则()A.30° B.45° C.60° D.75°二、填空题:本大题共6小题,每小题5分,共30分。11.函数的反函数是______.12.已知无穷等比数列的所有项的和为,则首项的取值范围为_____________.13.已知圆C:,点M的坐标为(2,4),过点N(4,0)作直线交圆C于A,B两点,则的最小值为________14.如图,在中,已知点在边上,,,则的长为____________.15.已知,则的值为__________.16.某公司租地建仓库,每月土地占用费(万元)与仓库到车站的距离(公里)成反比.而每月库存货物的运费(万元)与仓库到车站的距离(公里)成正比.如果在距车站公里处建仓库,这两项费用和分别为万元和万元,由于地理位置原因.仓库距离车站不超过公里.那么要使这两项费用之和最小,最少的费用为_____万元.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设向量,,.(1)若,求实数的值;(2)求在方向上的投影.18.某专卖店为了对新产品进行合理定价,将该产品按不同的单价试销,调查统计如下表:售价(元)45678周销量(件)9085837973(1)求周销量y(件)关于售价x(元)的线性回归方程;(2)按(1)中的线性关系,已知该产品的成本为2元/件,为了确保周利润大于598元,则该店应该将产品的售价定为多少?参考公式:,.参考数据:,19.如图,已知平面是正三角形,.(1)求证:平面平面;(2)求二面角的正切值.20.已知函数.(1)求的最小正周期;(2)当时,求的最大值和最小值以及对应的的值.21.已知椭圆(常数),点是上的动点,是右顶点,定点的坐标为.⑴若与重合,求的焦点坐标;⑵若,求的最大值与最小值;⑶若的最小值为,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

把直线方程化为,得到直线恒过定点,由此可得点P到直线的距离的最大值就是点P到定点的距离,得到答案.【详解】由题意,直线可化为,令,解得,即直线恒过定点,则点P到直线的距离的最大值就是点P到定点的距离为:,故选A.【点睛】本题主要考查了直线方程的应用,其中解答中把直线方程化为,得出直线恒过定点是解答本题的关键,着重考查了转化思想,以及推理与运算能力,属于基础题.2、B【解析】

由题意知,本题考查等比数列问题,此人每天的步数构成公比为的等比数列,由求和公式可得首项,进而求得答案.【详解】设第一天的步数为,依题意知此人每天的步数构成公比为的等比数列,所以,解得,由,,解得,故选B.【点睛】本题主要考查学生的数学抽象和数学建模能力.3、C【解析】

利用线面垂直、线面平行、面面垂直的性质定理分别对选项分析选择.【详解】对于A,若,,则或者;故A错误;对于B,若,则可能在内或者平行于;故B错误;对于C,若,,,过分作平面于,作平面,则根据线面平行的性质定理得,,∴,根据线面平行的判定定理,可得,又,,根据线面平行的性质定理可得,又,∴;故C正确;对于D.若,,则与可能垂直,如墙角;故D错误;故选:C.【点睛】本题考查了面面垂直、线面平行、线面垂直的性质定理及应用,涉及空间线线平行的传递性,考查了空间想象能力,熟练运用定理是关键.4、D【解析】

根据椭圆标准方程可得,解不等式组可得结果.【详解】曲线表示椭圆,,解得,且,的取值范围是或,故选D.【点睛】本题主要考查椭圆的标准方程以及不等式的解法,意在考查对基础知识掌握的熟练程度,属于简单题.5、B【解析】

根据向量的加减运算法则,通过,把用和表示出来,即可得到的值.【详解】在中,,点是直线上一点,所以,又三点共线,所以,即.故选:B.【点睛】本题考查实数值的求法,解题时要认真审题,注意平面向量加法法则的合理运用,属于基础题.6、B【解析】

利用成等差数列可得,再利用余弦定理构造的结构再代入求得即可.【详解】由成等差数列可得,由余弦定理有,即,解得,即.故选:B【点睛】本题主要考查了等差中项与余弦定理的运算,需要根据题意构造与的结构代入求解.属于中档题.7、C【解析】

根据三角形满足的两个条件,设出三边长分别为,三个角分别为,利用正弦定理列出关系式,根据二倍角的正弦函数公式化简后,表示出,然后利用余弦定理得到,将表示出的代入,整理后得到关于的方程,求出方程的解得到的值,【详解】解:设三角形三边是连续的三个自然,三个角分别为,

由正弦定理可得:,

再由余弦定理可得:,

化简可得:,解得:或(舍去),

∴,故三角形的三边长分别为:,故选:C.【点睛】此题考查了正弦、余弦定理,以及二倍角的正弦函数公式,正弦、余弦定理很好的建立了三角形的边角关系,熟练掌握定理是解本题的关键,属于中档题.8、B【解析】

写出与126°的角终边相同的角的集合,取k=1得答案.【详解】解:与126°的角终边相同的角的集合为{α|α=126°+k•360°,k∈Z}.取k=1,可得α=486°.∴与126°的角终边相同的角是486°.故选B.【点睛】本题考查终边相同角的计算,是基础题.9、B【解析】

设出圆的方程,利用圆心到直线的距离列出方程求解即可【详解】∵圆心在直线上,∴可设圆心为,设所求圆的方程为,则由题意,解得∴所求圆的方程为.选B【点睛】直线与圆的问题绝大多数都是转化为圆心到直线的距离公式进行求解10、C【解析】

试题分析:由三角形面积公式得,,所以.显然三角形为直角三角形,且,所以.考点:解三角形.二、填空题:本大题共6小题,每小题5分,共30分。11、,【解析】

求出函数的值域作为其反函数的定义域,再由求出其反函数的解析式,综合可得出答案.【详解】,则,由可得,,因此,函数的反函数是,.故答案为:,.【点睛】本题考查反三角函数的求解,解题时注意求出原函数的值域作为其反函数的定义域,考查计算能力,属于中等题.12、【解析】

设等比数列的公比为,根据题意得出或,根据无穷等比数列的和得出与所满足的关系式,由此可求出实数的取值范围.【详解】设等比数列的公比为,根据题意得出或,由于无穷等比数列的所有项的和为,则,.当时,则,此时,;当时,则,此时,.因此,首项的取值范围是.故答案为:.【点睛】本题考查利用无穷等比数列的和求首项的取值范围,解题的关键就是结合题意得出首项和公比的关系式,利用不等式的性质或函数的单调性来求解,考查分析问题和解决问题的能力,属于中等题.13、8【解析】

先将所求化为M到AB中点的距离的最小值问题,再求得AB中点的轨迹为圆,利用点M到圆心的距离减去半径求得结果.【详解】设A、B中点为Q,连接QC,则QC,所以Q的轨迹是以NC为直径的圆,圆心为P(5,0),半径为1,又,即求点M到P的距离减去半径,又,所以,故答案为8【点睛】本题考查了向量的加法运算,考查了求圆中弦中点轨迹的几何方法,考查了点点距公式,考查了分析解决问题的能力,属于中档题.14、【解析】

由诱导公式可知,在中用余弦定理可得BD的长。【详解】由题得,,在中,可得,又,代入得,解得.故答案为:【点睛】本题考查余弦定理和诱导公式,是基础题。15、【解析】

利用诱导公式将等式化简,可求出的值.【详解】由诱导公式可得,故答案为.【点睛】本题考查利用诱导公式化简求值,在利用诱导公式处理化简求值的问题时,要充分理解“奇变偶不变,符号看象限”这个规律,考查运算求解能力,属于基础题.16、8.2【解析】

设仓库与车站距离为公里,可得出、关于的函数关系式,然后利用双勾函数的单调性求出的最小值.【详解】设仓库与车站距离为公里,由已知,.费用之和,求中,由双勾函数的单调性可知,函数在区间上单调递减,所以,当时,取得最小值万元,故答案为:.【点睛】本题考查利用双勾函数求最值,解题的关键就是根据题意建立函数关系式,再利用基本不等式求最值时,若等号取不到时,可利用相应的双勾函数的单调性来求解,考查分析问题和解决问题的能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)计算出的坐标,然后利用共线向量的坐标表示列出等式求出实数的值;(2)求出和,从而可得出在方向上的投影为.【详解】(1),,,,,,解得;(2),,在方向上的投影.【点睛】本题考查平面向量的坐标运算,考查共线向量的坐标运算以及投影的计算,在解题时要弄清楚这些知识点的定义以及坐标运算律,考查计算能力,属于中等题.18、(1);(2)14元【解析】

(1)由表中数据求得,结合参考数据可得.再代入方程即可求得线性回归方程.(2)设售价为元,代入(1)中的回归方程,求得销量.即可求得利润的表达式.由于周利润大于598元,得不等式后,解不等式即可求解.【详解】(1)由表可得,因为,由参考数据,,所以代入公式可得,则,所以线性回归方程;(2)设售价为元,由(1)知周销量为,所以利润,解得,因为,则.所以为了确保周利润大于598元,则该店应该将产品的售价定为14元.【点睛】本题考查了线性回归方程的求法和简单应用,一元二次不等式的解法,属于基础题.19、(1)证明见解析;(2).【解析】

(1)取的中点的中点,证明,由根据线面垂直判定定理可得,可得平面,结合面面垂直的判定定理,可得平面平面;

(2)过作,连接BM,可以得到为二面角的平面角,解三角形即可求出二面角的正切值.【详解】解:(1)取BE的中点F.

AE的中点G,连接GD,CF∴,GF∥AB又∵,CD∥AB∴CD∥GF,CD=GF,∴CFGD是平行四边形,∴CF∥GD,又∵CF⊥BF,CF⊥AB∴CF⊥平面ABE∵CF∥DG∴DG⊥平面ABE,∵DG⊂平面ABE∴平面ABE⊥平面ADE;(2)∵AB=BE,∴AE⊥BG,∴BG⊥平面ADE,过G作GM⊥DE,连接BM,则BM⊥DE,则∠BMG为二面角A−DE−B的平面角,设AB=BC=2CD=2,则,在Rt△DCE中,CD=1,CE=2,∴,又,由DE⋅GM=DG⋅EG得,所以,故面角的正切值为:.【点睛】本题考查了面面垂直的判定定理及二面角的平面角的作法,重点考查了空间想象能力,属中档题.20、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论