版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省新绛县第二中学2023-2024学年高一下数学期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则的最小值是()A. B. C. D.2.若双曲线的渐近线与直线所围成的三角形面积为2,则该双曲线的离心率为()A. B. C. D.3.已知正四棱锥的底面边长为2,侧棱长为,则该正四棱锥的体积为()A. B. C. D.4.如果,并且,那么下列不等式中不一定成立的是()A. B. C. D.5.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.366.已知关于的不等式的解集是,则的值是()A. B. C. D.7.已知点,则向量在方向上的投影为()A. B. C. D.8.函数在上的图像大致为()A. B.C. D.9.已知平面向量满足:,,,若,则的值为()A. B. C.1 D.-110.设点是函数图象士的任意一点,点满足,则的最小值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则与的夹角等于____.12.据监测,在海滨某城市附近的海面有一台风,台风中心位于城市的南偏东30°方向,距离城市的海面处,并以的速度向北偏西60°方向移动(如图示).如果台风侵袭范围为圆形区域,半径,台风移动的方向与速度不变,那么该城市受台风侵袭的时长为_______小时.13.正六棱柱各棱长均为,则一动点从出发沿表面移动到时的最短路程为__________.14.与终边相同的最小正角是______.15.在中,.以为圆心,2为半径作圆,线段为该圆的一条直径,则的最小值为_________.16.设α为第二象限角,若sinα=35三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列满足,,等差数列满足,,求数列的前项和.18.在中,角所对的边分别为.且.(1)求的值;(2)若,求的面积.19.单调递增的等差数列满足,且成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.20.已知函数的周期为,且图像上一个最低点为.(1)求的解析式(2)若函数在上至少含20个零点时,求b的最小值.21.已知圆,过点作直线交圆于、两点.(1)当经过圆心时,求直线的方程;(2)当直线的倾斜角为时,求弦的长;(3)求直线被圆截得的弦长时,求以线段为直径的圆的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】,则,当且仅当取等号.所以选项是正确的.点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.2、A【解析】渐近线为,时,,所以,即,,,故选A.3、D【解析】
求出正四棱锥的高后可求其体积.【详解】正四棱锥底面的对角线的长度为,故正四棱锥的高为,所以体积为,故选D.【点睛】正棱锥中,棱锥的高、斜高、侧棱和底面外接圆的半径可构成四个直角三角形,它们沟通了棱锥各个几何量之间的关系,解题中注意利用它们实现不同几何量之间的联系.4、D【解析】
不等式两边乘(或除以)同一个负数,不等号的方向改变,可判定A的真假;a>b,-1>-2,根据同向不等式可以相加,可判定B的真假;根据a-b>0则b-a<0,进行判定C的真假;a的符号不确定,从而选项D不一定成立,从而得到结论.【详解】∵a,b∈R,并且a>b,∴−a<−b,故A一定正确;a>b,−1>−2,根据同向不等式可以相加得,a−1>b−2,故B一定正确;a−b>0则b−a<0,所以a−b>b−a,故C一定正确;不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,而a的符号不确定,故D不一定正确.故选D.【点睛】本题主要考查利用不等式的性质判断不等关系,属于基础题.5、B【解析】试题分析:根据条件中职工总数和青年职工人数,以及中年和老年职工的关系列出方程,解出老年职工的人数,根据青年职工在样本中的个数,算出每个个体被抽到的概率,用概率乘以老年职工的个数,得到结果.设老年职工有x人,中年职工人数是老年职工人数的2倍,则中年职工有2x,∵x+2x+160=430,∴x=90,即由比例可得该单位老年职工共有90人,∵在抽取的样本中有青年职工32人,∴每个个体被抽到的概率是用分层抽样的比例应抽取×90=18人.故选B.考点:分层抽样点评:本题是一个分层抽样问题,容易出错的是不理解分层抽样的含义或与其它混淆.抽样方法是数学中的一个小知识点,但一般不难,故也是一个重要的得分点,不容错过6、A【解析】
先利用韦达定理得到关于a,b的方程组,解方程组即得a,b的值,即得解.【详解】由题得,所以a+b=7.故选:A【点睛】本题主要考查一元二次不等式的解集,意在考查学生对该知识的理解掌握水平和分析推理能力.7、A【解析】
,,向量在方向上的投影为,故选A.8、A【解析】
利用函数的奇偶性和函数图像上的特殊点,对选项进行排除,由此得出正确选项.【详解】由于,所以函数为奇函数,图像关于原点对称,排除C选项.由于,所以排除D选项.由于,所以排除B选项.故选:A.【点睛】本小题主要考查函数图像的识别,考查函数的奇偶性、特殊点,属于基础题.9、C【解析】
将代入,化简得到答案.【详解】故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.10、B【解析】
函数表示圆位于x轴下面的部分。利用点到直线的距离公式,求出最小值。【详解】函数化简得。圆心坐标,半径为2.所以【点睛】本题考查点到直线的距离公式,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据向量的坐标即可求出,根据向量夹角的公式即可求出.【详解】∵,,,,∴,又,∴.故答案为:.【点睛】考查向量坐标的数量积运算,向量坐标求向量长度的方法,以及向量夹角的余弦公式,属于基础题.12、1【解析】
设台风移动M处的时间为th,则|PM|=20t,利用余弦定理求得AM,而该城市受台风侵袭等价于AM≤60,解此不等式可得.【详解】如图:设台风移动M处的时间为th,则|PM|=20t,依题意可得,在三角形APM中,由余弦定理可得:依题意该城市受台风侵袭等价于AM≤60,即AM2≤602,化简得:,所以该城市受台风侵袭的时间为6﹣1=1小时.故答案为:1.【点睛】本题考查了余弦定理的应用,考查了数学运算能力.13、【解析】
根据可能走的路径,将所给的正六棱柱展开,利用平面几何知识求解比较.【详解】将所给的正六棱柱下图(2)表面按图(1)展开.,,,故从A沿正侧面和上表面到D1的路程最短为故答案为:.【点睛】本题主要考查了空间几何体展形图的应用,还考查了空间想象和运算求解的能力,属于中档题.14、【解析】
根据终边相同的角的定义以及最小正角的要求,可确定结果.【详解】因为,所以与终边相同的最小正角是.故答案为:.【点睛】本题主要考查终边相同的角,属于基础题.15、-10【解析】
向量变形为,化简得,转化为讨论夹角问题求解.【详解】由题线段为该圆的一条直径,设夹角为,可得:,当夹角为时取得最小值-10.故答案为:-10【点睛】此题考查求平面向量数量积的最小值,关键在于根据平面向量的运算法则进行变形,结合线性运算化简求得,此题也可建立直角坐标系,三角换元设坐标利用函数关系求最值.16、-【解析】
先求出cosα,再利用二倍角公式求sin2α【详解】因为α为第二象限角,若sinα=所以cosα=所以sin2α故答案为-【点睛】本题主要考查同角三角函数的平方关系,考查二倍角的正弦公式,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】
由等比数列易得公比和,进而可得等差数列的首项和公差,代入求和公式计算可得.【详解】解:∵等比数列满足,,
∴公比,
,
,
∴等差数列中,
∴公差,
∴数列的前项和.【点睛】本题考查等差数列的求和公式,涉及等比数列的通项公式,求出数列的首项和公差是解决问题的关键,属基础题.18、(1)(2)【解析】
(1)根据正弦定理求出,然后代入所求的式子即可;(2)由余弦定理求出ab=4,然后根据三角形的面积公式求出答案.【详解】(1)因为,由正弦定理,得,∴;(2)∵,由余弦定理得,即,所以,解得或(舍去),所以【点睛】本题考查了正弦定理、余弦定理等知识.在解三角形问题中常涉及正弦定理、余弦定理、三角形面积公式及同角三角函数基本关系等问题,故应综合把握.19、(1);(2).【解析】
(1)设等差数列的公差为,,运用等差数列的通项公式和等比数列中项性质,解方程可得公差,进而得到所求通项公式;(2)求得,再用裂项相消法即可得出结论.【详解】解:(1)设等差数列的公差为,,可得,,由,,成等比数列,,解得或舍去),则;(2),∴.【点睛】本题主要考查等差数列的通项公式和等比数列中项性质,考查数列的裂项相消法求和,考查运算能力,属于中档题.20、(1)(2)【解析】
(1)由周期得,利用最低点坐标可得,得解析式;(2)直接求出零点,根据零点排列得出有20个零点时,的最小值.【详解】(1)由最低点为,得,由,得,由点在图像上得,即,,即,又,,.(2)由(1)得,周期,在长为的闭区间内有2个或3个零点,由,得,或,所以或..又,则当时恰有20个零点,此时b的最小值为.【点睛】本题考查求三角函数解析式,考查函数的零点个数问题.掌握三角函数的性质如周期性质,最值是解本题的基础.本题零点问题可直接求出零点,然后由零点分析得出结论.21、(1);(2);(3).【解析】
(1)求出圆的圆心,代入直线方程,求出直线的斜
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度木方模板产业链上下游整合服务合同4篇
- 2025年度航空航天器研发与制造合同12篇
- 2025年度长途物流车辆定点清洗保养合同4篇
- 2025年度环保设备安装与污染物减排服务协议3篇
- 2025年度木地板原材采购与仓储管理合同4篇
- 2025年度劳动合同解除补偿协议及离职员工子女教育资助协议
- 2025年度足疗店线上线下整合营销转让合同
- 2025年度影视演员经纪服务与劳动合同
- 二零二五版木工行业绿色生产标准合同4篇
- 二零二五年度运输合同延误纠纷处理范本
- 《大学生职业发展与就业指导》课程标准
- 第23课《出师表》课件(共56张)
- GB/T 3953-2024电工圆铜线
- 发电机停电故障应急预案
- 接电的施工方案
- 常用药物作用及副作用课件
- 幼儿阿拉伯数字描红(0-100)打印版
- 社会组织等级评估报告模板
- GB/T 12173-2008矿用一般型电气设备
- 新媒体研究方法教学ppt课件(完整版)
- 2020新版个人征信报告模板
评论
0/150
提交评论