版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省广安市广安区广安中学2024年数学高一下期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线倾斜角的范围是()A.(0,] B.[0,] C.[0,π) D.[0,π]2.某社区义工队有24名成员,他们年龄的茎叶图如下表所示,先将他们按年龄从小到大编号为1至24号,再用系统抽样方法抽出6人组成一个工作小组,则这个小组年龄不超过55岁的人数为()3940112551366778889600123345A.1 B.2 C.3 D.43.若函数()的最大值与最小正周期相同,则下列说法正确的是()A.在上是增函数 B.图象关于直线对称C.图象关于点对称 D.当时,函数的值域为4.甲、乙两个不透明的袋中各有5个仅颜色不同的球,其中甲袋中有3个红球,2个白球,乙袋中有2个红球,3个白球,现从两袋中各随机取一球,则两球不同颜色的概率为()A. B. C. D.5.已知向量,,且,,,则一定共线的三点是()A.A,B,D B.A,B,C C.B,C,D D.A,C,D6.如图,网格纸上正方形小格边长为,图中粗线画的是某几何体的三视图,则该几何体的表面积等于()A.B.C.D.7.在△ABC中,N是AC边上一点,且=,P是BN上的一点,若=m+,则实数m的值为()A. B. C.1 D.38.函数(且)的图像是下列图像中的()A. B.C. D.9.已知两点,,若点是圆上的动点,则△面积的最小值是A. B.6 C.8 D.10.已知圆锥的表面积为,且它的侧面展开图是一个半圆,则圆锥的底面半径为A. B. C. D.()二、填空题:本大题共6小题,每小题5分,共30分。11.计算:________.12.已知,为锐角,且,则__________.13.已知数列是等差数列,记数列的前项和为,若,则________.14.在中,角A,B,C所对的边分别为a,b,c,,的平分线交AC于点D,且,则的最小值为________.15.等比数列的前项和为,若,,成等差数列,则其公比为_________.16.设,数列满足,,将数列的前100项从大到小排列得到数列,若,则k的值为______;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(Ⅰ)已知向量,求与的夹角的余弦值;(Ⅱ)已知角终边上一点,求的值.18.已知,.(1)计算及、;(2)设,,,若,试求此时和满足的函数关系式,并求的最小值.19.设a为实数,函数,(1)若,求不等式的解集;(2)是否存在实数a,使得函数在区间上既有最大值又有最小值?若存在,求出实数a的取值范围;若不存在,请说明理由;(3)写出函数在R上的零点个数(不必写出过程).20.设向量、满足,,.(1)求的值;(2)若,求实数的值.21.已知等比数列的公比,且的等差中项为10,.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:根据直线倾斜角的定义判断即可.解:直线倾斜角的范围是:[0,π),故选C.2、B【解析】
求出样本间隔,结合茎叶图求出年龄不超过55岁的有8人,然后进行计算即可.【详解】解:样本间隔为,年龄不超过55岁的有8人,则这个小组中年龄不超过55岁的人数为人.故选:.【点睛】本题主要考查茎叶图以及系统抽样的应用,求出样本间隔是解决本题的关键,属于基础题.3、A【解析】
先由函数的周期可得,再结合三角函数的性质及三角函数值域的求法逐一判断即可得解.【详解】解:由函数()的最大值与最小正周期相同,所以,即,即,对于选项A,令,解得:,即函数的增区间为,当时,函数在为增函数,即A正确,对于选项B,令,解得,即函数的对称轴方程为:,又无解,则B错误,对于选项C,令,解得,即函数的对称中心为:,又无解,则C错误,对于选项D,,则,即函数的值域为,即D错误,综上可得说法正确的是选项A,故选:A.【点睛】本题考查了三角函数的性质,重点考查了三角函数值域的求法,属中档题.4、D【解析】
现从两袋中各随机取一球,基本事件总数,两球不同颜色包含的基本事件个数,由此能求出两球不同颜色的概率.【详解】甲、乙两个不透明的袋中各有5个仅颜色不同的球,其中甲袋中有3个红球、2个白球,乙袋中有2个红球、3个白球,现从两袋中各随机取一球,基本事件总数,两球不同颜色包含的基本事件个数,则两球不同颜色的概率为.故选.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于中档题.5、A【解析】
根据向量共线定理进行判断即可.【详解】因为,且,有公共点B,所以A,B,D三点共线.故选:A.【点睛】本题考查了用向量共线定理证明三点共线问题,属于常考题.6、C【解析】
由三视图可知该几何体是一个四棱锥,作出图形即可求出表面积。【详解】该几何体为四棱锥,如图..选C.【点睛】本题考查了三视图,考查了四棱锥的表面积,考查了学生的空间想象能力与计算能力,属于基础题。7、B【解析】
根据向量的线性表示逐步代换掉不需要的向量求解.【详解】设,所以所以故选B.【点睛】本题考查向量的线性运算,属于基础题.8、C【解析】
将函数表示为分段函数的形式,由此确定函数图像.【详解】依题意,.由此判断出正确的选项为C.故选C.【点睛】本小题主要考查三角函数图像的识别,考查分段函数解析式的求法,考查同角三角函数的基本关系式,属于基础题.9、A【解析】
求得圆的方程和直线方程以及,利用三角换元假设,利用点到直线距离公式和三角函数知识可求得,代入三角形面积公式可求得结果.【详解】由题意知,圆的方程为:,直线方程为:,即设点到直线的距离:,其中当时,本题正确选项:【点睛】本题考查点到直线距离的最值的求解问题,关键是能够利用三角换元的方式将问题转化为三角函数的最值的求解问题.10、C【解析】解:二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】
直接利用数列的极限的运算法则求解即可.【详解】.故答案为:3【点睛】本题考查数列的极限的运算法则,考查计算能力,属于基础题.12、【解析】
由题意求得,再利用两角和的正切公式求得的值,可得的值.【详解】,为锐角,且,即,.再结合,则,故答案为.【点睛】本题主要考查两角和的正切公式的应用,属于基础题.13、1【解析】
由等差数列的求和公式和性质可得,代入已知式子可得.【详解】由等差数列的求和公式和性质可得:=,且,∴.故答案为:1.【点睛】本题考查了等差数列的求和公式及性质的应用,属于基础题.14、32【解析】
根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可.【详解】如图所示,则△ABC的面积为,即ac=2a+2c,得,得,当且仅当,即3c=a时取等号;∴的最小值为32.故答案为:32.【点睛】本题考查三角形中的几何计算,属于中等题.15、【解析】试题分析:、、成等差数列考点:1.等差数列性质;2.等比数列通项公式16、【解析】
根据递推公式利用数学归纳法分析出与的关系,然后考虑将的前项按要求排列,再根据项的序号计算出满足的值即可.【详解】由已知,a1=a,0<a<1;并且函数y=ax单调递减;∵∴1>a2>a1∴,∴a2>a3>a1∵,且∴a2>a4>a3>a1……当为奇数时,用数学归纳法证明,当时,成立,设时,,当时,因为,结合的单调性,所以,所以即,所以时成立,所以为奇数时,;当为偶数时,用数学归纳法证明,当时,成立,设时,,当时,因为,结合的单调性,所以,所以即,所以时成立,所以为偶数时,;用数学归纳法证明:任意偶数项大于相邻的奇数项即证:当为奇数,,当时,符合,设时,,当时,因为,结合的单调性,所以,所以,所以,所以时成立,所以当为奇数时,,据此可知:,当时,若,则有,此时无解;当时,此时的下标成首项为公差为的等差数列,通项即为,若,所以,所以.故答案为:.【点睛】本题考查数列与函数的综合应用,难度较难.(1)分析数列的单调性时,要注意到数列作为特殊的函数,其定义域为;(2)证明数列的单调性可从与的关系入手分析.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由已知分别求得及与,再由数量积求夹角计算结果;(Ⅱ)利用任意角的三角函数的定义求得sinα,再由三角函数的诱导公式化简求值.【详解】(Ⅰ)∵,∴,||=5,||,∴.(Ⅱ)∵P(﹣4,3)为角α终边上一点,∴,.则sin2α.【点睛】本题考查利用数量积求向量的夹角,考查任意角的三角函数的定义,训练了利用诱导公式化简求值,是基础题.18、(1),,;(2),.【解析】
(1)根据数量积和模的坐标运算计算;(2)由可得出,然后由二次函数性质求得最小值.【详解】(1)由题意及,同理,.(2)∵,∴,∴,即,又,∴时,.【点睛】本题考查向量的数量积与模的坐标运算,考查向量垂直与数量积的关系.掌握数量积的性质是解题基础.其中.19、(1)(2)不存在这样的实数,理由见解析(3)见解析【解析】
(1)代入的值,通过讨论的范围,求出不等式的解集即可;(2)通过讨论的范围,求出函数的单调区间,再求出函数的最值,得到关于的不等式组,解出并判断即可;(3)通过讨论的范围,判断函数的零点个数即可【详解】(1)当时,,则当时,,解得或,故;当时,,解集为,综上,的解集为(2),显然,,①当时,则在上单调递增,在上单调递减,在上单调递增,因为函数在上既有最大值又有最小值,所以,,则,即,解得,故不存在这样的实数;②当时,则在上单调递增,在上单调递减,在上单调递增,因为函数在上既有最大值又有最小值,故,,则,即,解得,故不存在这样的实数;③当时,则为上的递增函数,故函数在上不存在最大值和最小值,综上,不存在这样的实数(3)当或时,函数的零点个数为1;当或时,函数的零点个数为2;当时,函数的零点个数为3【点睛】本题考查分段函数的应用,考查利用函数的单调性求最值,考查函数的零点个数,着重考查分类讨论思想20、(1);(2).【解析】
(1)将等式两边平方,利用平面向量数量积的运算律可计算出的值;(2)由转化为,然后利用平面向量数量积的运算律可求出实数的值.【详解】(1)在等式两边平方得,即,即,解得;(2),,即,解得.【点睛】本题考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年全功能重型货车租赁服务协议
- 2024年担保协议模板集锦
- 2024科技创新项目前期咨询服务协议
- 钢渣交易协议:2024年权威本
- 2024年度工程建设项目施工协议模板
- 中小学德育教育的任务分解
- 教师教育转型的阶段性目标
- 高品质不锈钢水箱销售协议2024
- 2024年拍摄项目安全管理协议
- 场员工2024年度固定期限劳动协议
- 简洁卡通生日快乐贺卡模板
- 电磁辐射计算
- 药事管理委员会会议纪要
- 不锈钢方管尺寸及理论重量重量表
- 【公开课课件】高中英语读后续写(整合)
- 民用建筑能效测评机构条件
- 网球教练求职简历模板免费下载
- 个人喜好调查问卷
- 引发剂I分解(课堂PPT)
- 设备对中技术PPT课件
- 分析工具(世纪大桥标准答案)
评论
0/150
提交评论