![湖南邵阳市城区中考一模数学试题及答案解析_第1页](http://file4.renrendoc.com/view4/M02/28/29/wKhkGGZnpI6AdDQfAAGbxQa_rKo886.jpg)
![湖南邵阳市城区中考一模数学试题及答案解析_第2页](http://file4.renrendoc.com/view4/M02/28/29/wKhkGGZnpI6AdDQfAAGbxQa_rKo8862.jpg)
![湖南邵阳市城区中考一模数学试题及答案解析_第3页](http://file4.renrendoc.com/view4/M02/28/29/wKhkGGZnpI6AdDQfAAGbxQa_rKo8863.jpg)
![湖南邵阳市城区中考一模数学试题及答案解析_第4页](http://file4.renrendoc.com/view4/M02/28/29/wKhkGGZnpI6AdDQfAAGbxQa_rKo8864.jpg)
![湖南邵阳市城区中考一模数学试题及答案解析_第5页](http://file4.renrendoc.com/view4/M02/28/29/wKhkGGZnpI6AdDQfAAGbxQa_rKo8865.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南邵阳市城区中考一模数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列计算正确的是()A.=±3 B.﹣32=9 C.(﹣3)﹣2= D.﹣3+|﹣3|=﹣62.如图,在平面直角坐标系中,直线y=k1x+2(k1≠0)与x轴交于点A,与y轴交于点B,与反比例函数y=在第二象限内的图象交于点C,连接OC,若S△OBC=1,tan∠BOC=,则k2的值是()A.3 B.﹣ C.﹣3 D.﹣63.的算术平方根是()A.4 B.±4 C.2 D.±24.下列运算正确的是()A.x2•x3=x6 B.x2+x2=2x4C.(﹣2x)2=4x2 D.(a+b)2=a2+b25.如果,那么代数式的值是()A.6 B.2 C.-2 D.-66.如图,是半圆的直径,点、是半圆的三等分点,弦.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为()A. B. C. D.7.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为()A.56×108 B.5.6×108 C.5.6×109 D.0.56×10108.如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是()A.7海里/时 B.7海里/时 C.7海里/时 D.28海里/时9.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.=2 B.=2C.=2 D.=210.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:9二、填空题(共7小题,每小题3分,满分21分)11.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.12.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是_____.13.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=__________.14.因式分解:x2﹣10x+24=_____.15.如图,已知抛物线与坐标轴分别交于A,B,C三点,在抛物线上找到一点D,使得∠DCB=∠ACO,则D点坐标为____________________.16.如图,一艘船向正北航行,在A处看到灯塔S在船的北偏东30°的方向上,航行12海里到达B点,在B处看到灯塔S在船的北偏东60°的方向上,此船继续沿正北方向航行过程中距灯塔S的最近距离是_____海里(不近似计算).17.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,则y1与y2的大小关系为__________.三、解答题(共7小题,满分69分)18.(10分)已知关于的一元二次方程.试证明:无论取何值此方程总有两个实数根;若原方程的两根,满足,求的值.19.(5分)如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);(2)求证:DE=BF.20.(8分)已知:如图所示,抛物线y=﹣x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0)(1)求抛物线的表达式;(2)设点P在该抛物线上滑动,且满足条件S△PAB=1的点P有几个?并求出所有点P的坐标.21.(10分)先化简,再求值:(),其中=22.(10分)已知△ABC中,D为AB边上任意一点,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α,(1)如图1所示,当α=60°时,求证:△DCE是等边三角形;(2)如图2所示,当α=45°时,求证:=;(3)如图3所示,当α为任意锐角时,请直接写出线段CE与DE的数量关系:=_____.23.(12分)计算:sin30°﹣+(π﹣4)0+|﹣|.24.(14分)如图,两座建筑物的水平距离为.从点测得点的仰角为53°,从点测得点的俯角为37°,求两座建筑物的高度(参考数据:
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】
分别根据二次根式的定义,乘方的意义,负指数幂的意义以及绝对值的定义解答即可.【详解】=3,故选项A不合题意;﹣32=﹣9,故选项B不合题意;(﹣3)﹣2=,故选项C符合题意;﹣3+|﹣3|=﹣3+3=0,故选项D不合题意.故选C.【点睛】本题主要考查了二次根式的定义,乘方的定义、负指数幂的意义以及绝对值的定义,熟记定义是解答本题的关键.2、C【解析】
如图,作CH⊥y轴于H.通过解直角三角形求出点C坐标即可解决问题.【详解】解:如图,作CH⊥y轴于H.由题意B(0,2),∵∴CH=1,∵tan∠BOC=∴OH=3,∴C(﹣1,3),把点C(﹣1,3)代入,得到k2=﹣3,故选C.【点睛】本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.3、C【解析】
先求出的值,然后再利用算术平方根定义计算即可得到结果.【详解】=4,4的算术平方根是2,所以的算术平方根是2,故选C.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.4、C【解析】
根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可.【详解】A、x2•x3=x5,故A选项错误;B、x2+x2=2x2,故B选项错误;C、(﹣2x)2=4x2,故C选项正确;D、(a+b)2=a2+2ab+b2,故D选项错误,故选C.【点睛】本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键5、A【解析】【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【详解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故选A.【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.6、D【解析】
连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OC∥BD且△BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案.【详解】解:如图,连接OC、OD、BD,∵点C、D是半圆O的三等分点,∴,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD是等边三角形,∴OC=OD=CD,∵,∴,∵OB=OD,∴△BOD是等边三角形,则∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴,∴S阴影=S扇形OBD,S半圆O,飞镖落在阴影区域的概率,故选:D.【点睛】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.7、C【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于56亿有10位,所以可以确定n=10﹣1=1.【详解】56亿=56×108=5.6×101,故选C.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.8、A【解析】试题解析:设货船的航行速度为海里/时,小时后货船在点处,作于点.由题意海里,海里,在中,所以在中,所以所以解得:故选A.9、A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.10、A【解析】
根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得.【详解】由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC,∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∴,故选A.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】分析:类比于现在我们的十进制“满十进一”,可以表示满六进一的数为:万位上的数×64+千位上的数×63+百位上的数×62+十位上的数×6+个位上的数,即1×64+2×63+3×62+0×6+2=1.详解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,故答案为:1.点睛:本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.12、x>﹣1.【解析】
根据函数y=3x+b和y=ax-3的图象交于点P(-1,-5),然后根据图象即可得到不等式
3x+b>ax-3的解集.【详解】解:∵函数y=3x+b和y=ax-3的图象交于点P(-1,-5),∴不等式
3x+b>ax-3的解集是x>-1,故答案为:x>-1.【点睛】本题考查一次函数与一元一次不等式、一次函数的图象,熟练掌握是解题的关键.13、44°【解析】
首先连接OB,由点C在过点B的切线上,且OC⊥OA,根据等角的余角相等,易证得∠CBP=∠CPB,利用等腰三角形的性质解答即可.【详解】连接OB,∵BC是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°,∴∠APO=∠CBP=68°,∵∠APO=∠CPB,∴∠CPB=∠ABP=68°,∴∠OCB=180°-68°-68°=44°,故答案为44°【点睛】此题考查了切线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.14、(x﹣4)(x﹣6)【解析】
因为(-4)×(-6)=24,(-4)+(-6)=-10,所以利用十字相乘法分解因式即可.【详解】x2﹣10x+24=x2﹣10x+(-4)×(-6)=(x﹣4)(x﹣6)【点睛】本题考查的是因式分解,熟练掌握因式分解的方法是解题的关键.15、(,),(-4,-5)【解析】
求出点A、B、C的坐标,当D在x轴下方时,设直线CD与x轴交于点E,由于∠DCB=∠ACO.所以tan∠DCB=tan∠ACO,从而可求出E的坐标,再求出CE的直线解析式,联立抛物线即可求出D的坐标,再由对称性即可求出D在x轴上方时的坐标.【详解】令y=0代入y=-x2-2x+3,∴x=-3或x=1,∴OA=1,OB=3,令x=0代入y=-x2-2x+3,∴y=3,∴OC=3,当点D在x轴下方时,∴设直线CD与x轴交于点E,过点E作EG⊥CB于点G,∵OB=OC,∴∠CBO=45°,∴BG=EG,OB=OC=3,∴由勾股定理可知:BC=3,设EG=x,∴CG=3-x,∵∠DCB=∠ACO.∴tan∠DCB=tan∠ACO=,∴,∴x=,∴BE=x=,∴OE=OB-BE=,∴E(-,0),设CE的解析式为y=mx+n,交抛物线于点D2,把C(0,3)和E(-,0)代入y=mx+n,∴,解得:.∴直线CE的解析式为:y=2x+3,联立解得:x=-4或x=0,∴D2的坐标为(-4,-5)设点E关于BC的对称点为F,连接FB,∴∠FBC=45°,∴FB⊥OB,∴FB=BE=,∴F(-3,)设CF的解析式为y=ax+b,把C(0,3)和(-3,)代入y=ax+b解得:,∴直线CF的解析式为:y=x+3,联立解得:x=0或x=-∴D1的坐标为(-,)故答案为(-,)或(-4,-5)【点睛】本题考查二次函数的综合问题,解题的关键是根据对称性求出相关点的坐标,利用直线解析式以及抛物线的解析式即可求出点D的坐标.16、6【解析】试题分析:过S作AB的垂线,设垂足为C.根据三角形外角的性质,易证SB=AB.在Rt△BSC中,运用正弦函数求出SC的长.解:过S作SC⊥AB于C.∵∠SBC=60°,∠A=30°,∴∠BSA=∠SBC﹣∠A=30°,即∠BSA=∠A=30°.∴SB=AB=1.Rt△BCS中,BS=1,∠SBC=60°,∴SC=SB•sin60°=1×=6(海里).即船继续沿正北方向航行过程中距灯塔S的最近距离是6海里.故答案为:6.17、y1<y1【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y1的大小,从而可以解答本题.详解:∵反比例函数y=-,-4<0,∴在每个象限内,y随x的增大而增大,∵A(-4,y1),B(-1,y1)是反比例函数y=-图象上的两个点,-4<-1,∴y1<y1,故答案为:y1<y1.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)-2.【解析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥1,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.详解:(1)证明:原方程可变形为x2-5x+6-p2-p=1.∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥1,∴无论p取何值此方程总有两个实数根;(2)∵原方程的两根为x1、x2,∴x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∴(x1+x2)2-3x1x2=3p2+1,∴52-3(6-p2-p)=3p2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥1时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.19、(1)作图见解析;(2)证明见解析;【解析】
(1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;(2)利用垂直平分线证得△DEO≌△BFO即可证得结论.【详解】解:(1)如图:(2)∵四边形ABCD为矩形,∴AD∥BC,∴∠ADB=∠CBD,∵EF垂直平分线段BD,∴BO=DO,在△DEO和三角形BFO中,,∴△DEO≌△BFO(ASA),∴DE=BF.考点:1.作图—基本作图;2.线段垂直平分线的性质;3.矩形的性质.20、(1)y=﹣x2+4x﹣3;(2)满足条件的P点坐标有3个,它们是(2,1)或(2+,﹣1)或(2﹣,﹣1).【解析】
(1)由于已知抛物线与x轴的交点坐标,则可利用交点式求出抛物线解析式;(2)根据二次函数图象上点的坐标特征,可设P(t,-t2+4t-3),根据三角形面积公式得到•2•|-t2+4t-3|=1,然后去绝对值得到两个一元二次方程,再解方程求出t即可得到P点坐标.【详解】解:(1)抛物线解析式为y=﹣(x﹣1)(x﹣3)=﹣x2+4x﹣3;(2)设P(t,﹣t2+4t﹣3),因为S△PAB=1,AB=3﹣1=2,所以•2•|﹣t2+4t﹣3|=1,当﹣t2+4t﹣3=1时,t1=t2=2,此时P点坐标为(2,1);当﹣t2+4t﹣3=﹣1时,t1=2+,t2=2﹣,此时P点坐标为(2+,﹣1)或(2﹣,﹣1),所以满足条件的P点坐标有3个,它们是(2,1)或(2+,﹣1)或(2﹣,﹣1).【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.21、【解析】分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a的值代入化简后的式子得出答案.详解:原式=将原式=点睛:本题主要考查的是分式的化简求值,属于简单题型.解决这个问题的关键就是就是将括号里面的分式进行化成同分母.22、1【解析】试题分析:(1)证明△CFD≌△DAE即可解决问题.(2)如图2中,作FG⊥AC于G.只要证明△CFD∽△DAE,推出=,再证明CF=AD即可.(3)证明EC=ED即可解决问题.试题解析:(1)证明:如图1中,∵∠ABC=∠ACB=60°,∴△ABC是等边三角形,∴BC=BA.∵DF∥AC,∴∠BFD=∠BCA=60°,∠BDF=∠BAC=60°,∴△BDF是等边三角形,∴BF=BD,∴CF=AD,∠CFD=120°.∵AE∥BC,∴∠B+∠DAE=180°,∴∠DAE=∠CFD=120°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=60°,∴∠FCD=∠ADE,∴△CFD≌△DAE,∴DC=DE.∵∠CDE=60°,∴△CDE是等边三角形.(2)证明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养殖买卖的合同范本
- 2025企业年金基金托管合同范本
- 2025江苏省建设工程造价咨询合同(示范文本)
- 油罐安全合同范本
- 2025企业管理资料范本福建劳动合同范本
- 2025衢州市衢江区高家镇湖仁村物业用房及厂房租赁合同
- 汽车货物运输合同协议书
- 2025【合同范本】农村土地承包合同
- 2025“谁造谁有”林地使用合同书
- 货物运输合同协议书模板
- 工程造价咨询服务方案(技术方案)
- 整体租赁底商运营方案(技术方案)
- 常用药物作用及副作用课件
- 小学生作文方格纸A4纸直接打印版
- 老人心理特征和沟通技巧
- 幼儿阿拉伯数字描红(0-100)打印版
- 标杆地产集团 研发设计 工程管理 品质地库标准研发成果V1.0
- TMS开发业务需求文档
- 2023年1月浙江高考英语听力试题及答案(含MP3+录音原文)
- HI-IPDV10芯片产品开发流程V10宣课件
- 房产抵押注销申请表
评论
0/150
提交评论