版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省会宁县第五中学2023-2024学年高三下学期第五次调研考试数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题,且是的必要不充分条件,则实数的取值范围为()A. B. C. D.2.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:)A.48 B.36 C.24 D.123.等差数列中,已知,且,则数列的前项和中最小的是()A.或 B. C. D.4.已知函数,若,使得,则实数的取值范围是()A. B.C. D.5.要得到函数的图象,只需将函数图象上所有点的横坐标()A.伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度B.伸长到原来的2倍(纵坐标不变),再将得到的图像向左平移个单位长度C.缩短到原来的倍(纵坐标不变),再将得到的图象向左平移个单位长度D.缩短到原来的倍(纵坐标不变),再将得到的图象向右平移个单位长度6.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,它历史悠久,风格独特,神兽人们喜爱.下图即是一副窗花,是把一个边长为12的大正方形在四个角处都剪去边长为1的小正方形后剩余的部分,然后在剩余部分中的四个角处再剪出边长全为1的一些小正方形.若在这个窗花内部随机取一个点,则该点不落在任何一个小正方形内的概率是()A. B. C. D.7.若双曲线的一条渐近线与直线垂直,则该双曲线的离心率为()A.2 B. C. D.8.以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月)变化图表,则以下说法错误的是()(注:图表一每个城市的条形图从左到右依次是1、2、3、4月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津、上海、重庆)A.3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均B.4月份仅有三个城市居民消费价格指数超过102C.四个月的数据显示北京市的居民消费价格指数增长幅度波动较小D.仅有天津市从年初开始居民消费价格指数的增长呈上升趋势9.已知的部分图象如图所示,则的表达式是()A. B.C. D.10.已知复数,则()A. B. C. D.211.若向量,,则与共线的向量可以是()A. B. C. D.12.如图是一个几何体的三视图,则该几何体的体积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.有以下四个命题:①在中,的充要条件是;②函数在区间上存在零点的充要条件是;③对于函数,若,则必不是奇函数;④函数与的图象关于直线对称.其中正确命题的序号为______.14.已知是偶函数,则的最小值为___________.15.在长方体中,,,,为的中点,则点到平面的距离是______.16.已知复数z1=1﹣2i,z2=a+2i(其中i是虚数单位,a∈R),若z1•z2是纯虚数,则a的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设椭圆的左右焦点分别为,离心率,右准线为,是上的两个动点,.(Ⅰ)若,求的值;(Ⅱ)证明:当取最小值时,与共线.18.(12分)以平面直角坐标系的原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,已知曲线,曲线(为参数),求曲线交点的直角坐标.19.(12分)在直角坐标系x0y中,把曲线α为参数)上每个点的横坐标变为原来的倍,纵坐标不变,得到曲线以坐标原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程(1)写出的普通方程和的直角坐标方程;(2)设点M在上,点N在上,求|MN|的最小值以及此时M的直角坐标.20.(12分)已知等差数列的前n项和为,等比数列的前n项和为,且,,.(1)求数列与的通项公式;(2)求数列的前n项和.21.(12分)在平面直角坐标系xOy中,已知平行于x轴的动直线l交抛物线C:于点P,点F为C的焦点.圆心不在y轴上的圆M与直线l,PF,x轴都相切,设M的轨迹为曲线E.(1)求曲线E的方程;(2)若直线与曲线E相切于点,过Q且垂直于的直线为,直线,分别与y轴相交于点A,当线段AB的长度最小时,求s的值.22.(10分)如图,在四棱锥中,侧面为等边三角形,且垂直于底面,,分别是的中点.(1)证明:平面平面;(2)已知点在棱上且,求直线与平面所成角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.【详解】解:命题,即:,是的必要不充分条件,,,解得.实数的取值范围为.故选:.【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验.2、C【解析】
由开始,按照框图,依次求出s,进行判断。【详解】,故选C.【点睛】框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。3、C【解析】
设公差为,则由题意可得,解得,可得.令
,可得
当时,,当时,,由此可得数列前项和中最小的.【详解】解:等差数列中,已知,且,设公差为,
则,解得
,.
令
,可得,故当时,,当时,,
故数列前项和中最小的是.故选:C.【点睛】本题主要考查等差数列的性质,等差数列的通项公式的应用,属于中档题.4、C【解析】试题分析:由题意知,当时,由,当且仅当时,即等号是成立,所以函数的最小值为,当时,为单调递增函数,所以,又因为,使得,即在的最小值不小于在上的最小值,即,解得,故选C.考点:函数的综合问题.【方法点晴】本题主要考查了函数的综合问题,其中解答中涉及到基本不等式求最值、函数的单调性及其应用、全称命题与存在命题的应用等知识点的综合考查,试题思维量大,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,其中解答中转化为在的最小值不小于在上的最小值是解答的关键.5、B【解析】
分析:根据三角函数的图象关系进行判断即可.详解:将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),
得到再将得到的图象向左平移个单位长度得到故选B.点睛:本题主要考查三角函数的图象变换,结合和的关系是解决本题的关键.6、D【解析】
由几何概型可知,概率应为非小正方形面积与窗花面积的比,即可求解.【详解】由题,窗花的面积为,其中小正方形的面积为,所以所求概率,故选:D【点睛】本题考查几何概型的面积公式的应用,属于基础题.7、B【解析】
由题中垂直关系,可得渐近线的方程,结合,构造齐次关系即得解【详解】双曲线的一条渐近线与直线垂直.∴双曲线的渐近线方程为.,得.则离心率.故选:B【点睛】本题考查了双曲线的渐近线和离心率,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.8、D【解析】
采用逐一验证法,根据图表,可得结果.【详解】A正确,从图表二可知,3月份四个城市的居民消费价格指数相差不大B正确,从图表二可知,4月份只有北京市居民消费价格指数低于102C正确,从图表一中可知,只有北京市4个月的居民消费价格指数相差不大D错误,从图表一可知上海市也是从年初开始居民消费价格指数的增长呈上升趋势故选:D【点睛】本题考查图表的认识,审清题意,细心观察,属基础题.9、D【解析】
由图象求出以及函数的最小正周期的值,利用周期公式可求得的值,然后将点的坐标代入函数的解析式,结合的取值范围求出的值,由此可得出函数的解析式.【详解】由图象可得,函数的最小正周期为,.将点代入函数的解析式得,得,,,则,,因此,.故选:D.【点睛】本题考查利用图象求三角函数解析式,考查分析问题和解决问题的能力,属于中等题.10、C【解析】
根据复数模的性质即可求解.【详解】,,故选:C【点睛】本题主要考查了复数模的性质,属于容易题.11、B【解析】
先利用向量坐标运算求出向量,然后利用向量平行的条件判断即可.【详解】故选B【点睛】本题考查向量的坐标运算和向量平行的判定,属于基础题,在解题中要注意横坐标与横坐标对应,纵坐标与纵坐标对应,切不可错位.12、A【解析】
根据三视图可得几何体为直三棱柱,根据三视图中的数据直接利用公式可求体积.【详解】由三视图可知几何体为直三棱柱,直观图如图所示:其中,底面为直角三角形,,,高为.∴该几何体的体积为故选:A.【点睛】本题考查三视图及棱柱的体积,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、①【解析】
由三角形的正弦定理和边角关系可判断①;由零点存在定理和二次函数的图象可判断②;由,结合奇函数的定义,可判断③;由函数图象对称的特点可判断④.【详解】解:①在中,,故①正确;②函数在区间上存在零点,比如在存在零点,但是,故②错误;③对于函数,若,满足,但可能为奇函数,故③错误;④函数与的图象,可令,即,即有和的图象关于直线对称,即对称,故④错误.故答案为:①.【点睛】本题主要考查函数的零点存在定理和对称性、奇偶性的判断,考查判断能力和推理能力,属于中档题.14、2【解析】
由偶函数性质可得,解得,再结合基本不等式即可求解【详解】令得,所以,当且仅当时取等号.故答案为:2【点睛】考查函数的奇偶性、基本不等式,属于基础题15、【解析】
利用等体积法求解点到平面的距离【详解】由题在长方体中,,,所以,所以,设点到平面的距离为,解得故答案为:【点睛】此题考查求点到平面的距离,通过在三棱锥中利用等体积法求解,关键在于合理变换三棱锥的顶点.16、-1【解析】
由题意,令即可得解.【详解】∵z1=1﹣2i,z2=a+2i,∴,又z1•z2是纯虚数,∴,解得:a=﹣1.故答案为:﹣1.【点睛】本题考查了复数的概念和运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)证明见解析.【解析】由与,得,,的方程为.设,则,由得.①(Ⅰ)由,得,②,③由①、②、③三式,消去,并求得,故.(Ⅱ),当且仅当或时,取最小值,此时,,故与共线.18、【解析】
利用极坐标方程与普通方程、参数方程间的互化公式化简即可.【详解】因为,所以,所以曲线的直角坐标方程为.由,得,所以曲线的普通方程为.由,得,所以(舍),所以,所以曲线的交点坐标为.【点睛】本题考查极坐标方程与普通方程,参数方程与普通方程间的互化,考查学生的计算能力,是一道容易题.19、(1)的普通方程为,的直角坐标方程为.(2)最小值为,此时【解析】
(1)由的参数方程消去求得的普通方程,利用极坐标和直角坐标转化公式,求得的直角坐标方程.(2)设出点的坐标,利用点到直线的距离公式求得最小值的表达式,结合三角函数的指数求得的最小值以及此时点的坐标.【详解】(1)由题意知的参数方程为(为参数)所以的普通方程为.由得,所以的直角坐标方程为.(2)由题意,可设点的直角坐标为,因为是直线,所以的最小值即为到的距离,因为.当且仅当时,取得最小值为,此时的直角坐标为即.【点睛】本小题主要考查参数方程化为普通方程,考查极坐标方程化为直角坐标方程,考查利用曲线参数方程求解点到直线距离的最小值问题,属于中档题.20、(1);(2)【解析】
(1)设数列的公差为d,由可得,,由即可解得,故,由,即可解得,进而求得.(2)由(1)得,,利用分组求和及错位相减法即可求得结果.【详解】(1)设数列的公差为d,数列的公比为q,由可得,,整理得,即,故,由可得,则,即,故.(2)由(1)得,,,故,所以,数列的前n项和为,设①,则②,②①得,综上,数列的前n项和为.【点睛】本题考查求等差等比的通项公式,考试分组求和及错位相减法求数列的和,考查学生的计算能力,难度一般.21、(1),(2).【解析】
根据题意设,可得PF的方程,根据距离即可求出;点Q处的切线的斜率存在,由对称性不妨设,根据导数的几何意义和斜率公式,求,并构造函数,利用导数求出函数的最值.【详解】因为抛物线C的方程为,所以F的坐标为,设,因为圆M与x轴、直线l都相切,l平行于x轴,所以圆M的半径为,点,则直线PF的方程为,即,所以,又m,,所以,即,所以E的方程为,,设,,,由知,点Q处的切线的斜率存在,由对称性不妨设,由,所以,,所以,,所以,.令,,则,由得,由得,所以在区间单调递减,在单调递增,所以当时,取得极小值也是最小值,即AB取得最小值此时.【点睛】本题考查了直线和抛物线的位置关系,以及利用导数求函数最值的关系,考查了运算能力和转化能力,属于难题.22、(1)证明见解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车产业政策解读与案例分析(余琤)
- 《分式方程解应用题》课件
- 四年级上册科学教科版课件第6课 营养要均衡
- 2021年吉林省辽源市公开招聘警务辅助人员(辅警)笔试冲刺自测题二卷含答案
- 2021年辽宁省铁岭市公开招聘警务辅助人员(辅警)笔试自考练习卷二含答案
- 2023年内蒙古自治区赤峰市公开招聘警务辅助人员(辅警)笔试高频必刷题试卷含答案
- 《计算机辅助电路设计》课件第3章
- 2024年安徽省池州市公开招聘警务辅助人员(辅警)笔试专项训练题试卷(2)含答案
- 《电表数据采集系统》课件
- 渠道的量化管理与冲突管理
- 高考及人生规划讲座模板
- 浙教版2023小学信息技术五年级上册 第6课《顺序结构》说课稿及反思
- 智能语音应用开发及服务合同
- 中小学中层干部培训
- 景观灯柱施工方案
- 人教版九年级化学下册第十一单元课题2化学与可持续发展课件
- 众创空间双创示范基地建设实施方案
- 医学教程 《小儿腹泻》课件
- 《财务管理》1-7章习题(学生)
- 信息安全培训-基础概念培训v1.7
- 艺术哲学:美是如何诞生的学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论