版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市宝山区行知实验中学数学高一下期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,则一定是()A.等腰三角形 B.直角三角形C.等边三角形 D.等腰直角三角形2.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则该人最后一天走的路程为().A.24里 B.12里 C.6里. D.3里3.一个几何体的三视图如图所示,则这个几何体的表面积为()A.13+5 B.11+5 C.4.对某班学生一次英语测试的成绩分析,各分数段的分布如下图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为()A.92% B.24% C.56% D.76%5.已知直线与直线平行,则实数k的值为()A.-2 B.2 C. D.6.已知向量=(),=(-1,1),若,则的值为()A. B. C. D.7.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则有().A. B. C. D.8.已知a,b,c满足,那么下列选项一定正确的是()A. B. C. D.9.已知圆:及直线:,当直线被截得的弦长为时,则等于()A. B. C. D.10.圆的圆心坐标和半径分别为()A.,2 B.,2 C.,4 D.,4二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,则在方向上的投影为______.12.在ΔABC中,角A,B,C所对的对边分别为a,b,c,若A=30∘,a=7,b=213.直线与直线的交点为,则________.14.已知空间中的三个顶点的坐标分别为,则BC边上的中线的长度为________.15.已知,,若,则______16.下列结论中正确的是______.(1)将图像向左平移个单位,再将所有点的横坐标扩大为原来的倍,得到的图像;(2)将图像上所有点的横坐标扩大为原来的倍,再将图像向左平移个单位,得到的图像;(3)将图像上所有点的横坐标扩大为原来的倍,再将图像向左平移个单位,得到的图像;(4)将图像上所有点的横坐标变为原来的倍,再将图像向左平移个单位,得到的图像;(5)将图像向左平移个单位,再将所有点的横坐标扩大为原来的倍,得到的图像;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在△ABC中,AC=4,,.(Ⅰ)求的大小;(Ⅱ)若D为BC边上一点,,求DC的长度.18.已知边长为2的等边,是边的中点,以为旋转中心,逆时针旋转得对应,与所在直线交于.(1)任意旋转角,判断是否是定值.若是,求此定值;若不是,说明理由.(2)求的最小值.19.已知,且.(1)求的值;(2)求的值.20.某种汽车,购车费用是10万元,每年使用的保险费和汽油费为万元,年维修费第一年为万元,以后逐年递增万元,问这种汽车使用多少年时,它的年平均费用最少?21.某地区2012年至2018年农村居民家庭人均纯收入y(单位:千元)的数据如下表:年份2012201320142015201620172018年份代号1234567人均纯收入2.93.33.64.44.85.25.9(1)已知y与x线性相关,求y关于x的线性回归方程;(2)利用(1)中的线性回归方程,预测该地区2020年农村居民家庭人均纯收入.(附:线性回归方程中,,,其中为样本平均数)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用余弦定理、三角形面积公式、正弦定理,求得和,通过等式消去,求得的两个值,再判断三角形的形状.【详解】,又,,,又,,又,,,,,,解得:或,一定是直角三角形.【点睛】本题在求解过程中对存在两组解,要注意解答的完整性与严谨性,综合两种情况,再对的形状作出判断.2、C【解析】
由题意可知,每天走的路程里数构成以为公比的等比数列,由求得首项,再由等比数列的通项公式求得该人最后一天走的路程.【详解】解:记每天走的路程里数为,可知是公比的等比数列,由,得,解得:,,故选C.【点睛】本题考查等比数列的通项公式,考查了等比数列的前项和,是基础的计算题.3、B【解析】
三视图可看成由一个长1宽2高1的长方体和以2和1为直角边的三角形为底面高为1的三棱柱组合而成.【详解】几何体可看成由一个长1宽2高1的长方体和以2和1为直角边的三角形为底面高为1的三棱柱组合而成S=【点睛】已知三视图,求原几何体的表面积或体积是高考必考内容,主要考查空间想象能力,需要熟练掌握常见的几何体的三视图,会识别出简单的组合体.4、C【解析】试题分析:.故C正确.考点:频率分布直方图.5、A【解析】
由两直线平行的可得:,运算即可得解.【详解】解:由两直线平行的判定可得:,解得,故选:A.【点睛】本题考查利用两直线平行求参数,属基础题.6、D【解析】
对条件两边平方,得到该两个向量分别垂直,代入点的坐标,计算参数,即可.【详解】结合条件可知,,得到,代入坐标,得到,解得,故选D.【点睛】本道题考查了向量的运算,考查了向量垂直坐标表示,难度中等.7、B【解析】
根据所给数据,分别求出平均数为a,中位数为b,众数为c,然后进行比较可得选项.【详解】,中位数为,众数为.故选:B.【点睛】本题主要考查统计量的求解,明确平均数、中位数、众数的求解方法是求解的关键,侧重考查数学运算的核心素养.8、D【解析】
c<b<a,且ac<1,可得c<1且a>1.利用不等式的基本性质即可得出.【详解】∵c<b<a,且ac<1,∴c<1且a>1,b与1的大小关系不定.∴满足bc>ac,ac<ab,故选D.【点睛】本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.9、C【解析】
求出圆心到直线的距离,由垂径定理计算弦长可解得.【详解】由题意,圆心为,半径为2,圆心到直线的距离为,所以,解得.故选:C.【点睛】本题考查直线与圆相交弦长问题,解题方法由垂径定理得垂直,由勾股定理列式计算.10、B【解析】试题分析:,所以圆心坐标和半径分别为(2,0)和2,选B.考点:圆标准方程二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由平面向量投影的定义可得出在方向上的投影为,从而可计算出结果.【详解】设平面向量与的夹角为,则在方向上的投影为.故答案为:.【点睛】本题考查平面向量投影的计算,熟悉平面向量投影的定义是解题的关键,考查计算能力,属于基础题.12、32或【解析】
由余弦定理求出c,再利用面积公式即可得到答案。【详解】由于在ΔABC中,A=30∘,a=7,b=23,根据余弦定理可得:a2=b所以当c=1时,ΔABC的面积S=12bcsinA=32故ΔABC的面积等于32或【点睛】本题考查余弦定理与面积公式在三角形中的应用,属于中档题。13、【解析】
(2,2)为直线和直线的交点,即点(2,2)在两条直线上,分别代入直线方程,即可求出a,b的值,进而得a+b的值。【详解】因为直线与直线的交点为,所以,,即,,故.【点睛】本题考查求直线方程中的参数,属于基础题。14、【解析】
先求出BC的中点,由此能求出BC边上的中线的长度.【详解】解:因为空间中的三个顶点的坐标分别为,所以BC的中点为,所以BC边上的中线的长度为:,故答案为:.【点睛】本题考查三角形中中线长的求法,考查中点坐标公式、两点间距离的求法等基础知识,考查运算求解能力,是基础题.15、【解析】
根据向量垂直的坐标表示列出等式,求出,再利用二倍角公式、平方关系即可求出.【详解】由得,,解得,.【点睛】本题主要考查了向量垂直的坐标表示以及二倍角公式、平方关系的应用.16、(1)(3)【解析】
根据三角函数图像伸缩变换与平移变换的原则,逐项判断,即可得出结果.【详解】(1)将图像向左平移个单位,得到的图像,再将所有点的横坐标扩大为原来的倍,得到的图像;(1)正确;(2)将图像上所有点的横坐标扩大为原来的倍,得到的图像,再将图像向左平移个单位,得到的图像;(2)错;(3)将图像上所有点的横坐标扩大为原来的倍,得到的图像,再将图像向左平移个单位,得到的图像;(3)正确;(4)将图像上所有点的横坐标变为原来的倍,得到的图像,再将图像向左平移个单位,得到的图像;(4)错;(5)将图像向左平移个单位,得到的图像,再将所有点的横坐标扩大为原来的倍,得到的图像;(5)错;故答案为(1)(3)【点睛】本题主要考查三角函数的图像变换,熟记图像变换原则即可,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)或【解析】
(Ⅰ)由正弦定理得到,在结合三角形内角的性质即可的大小;(Ⅱ)由(Ⅰ)可得的大小,在中,利用余弦定理即可求出边的长.【详解】(Ⅰ)在中,由正弦定理得,所以.因为,所以,所以.(Ⅱ)在中,.在中,由余弦定理,得,即,解得或.经检验,都符合题意.【点睛】本题主要考查正弦定理与余弦定理,属于基础题.18、(1)是,0;(2).【解析】
(1)以为坐标原点,所在直线为轴,所在直线为轴建立平面直角坐标系,得出的坐标,计算得出,进而得出;(2)根据得出点的轨迹是以为直径的圆,由圆的对称性得出的最小值.【详解】(1)以为坐标原点,所在直线为轴,所在直线为轴建立平面直角坐标系则,即∴设,则所以为定值,定值为(2)由(1)知,故在以为直径的圆上设的中点,则,以为直径的圆的半径由圆的对称性可知,的最小值是.【点睛】本题主要考查了计算向量的数量积以及圆对称性的应用,属于中档题.19、(1)(2)【解析】
(1)由即可求得;(2)可由的差角公式进行求解【详解】(1)由题可知,,,(2),又由前式可判断,,,故,【点睛】本题考查三角函数的计算,二倍角公式的使用,两角差公式的使用,易错点为忽略具体的角度范围,属于中档题20、这种汽车使用年时,它的年平均费用最小【解析】
设这种汽车使用年时,它的年平均费用为万元,则,于是,当,即时,取得最小值,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度绿色环保租房中介服务费合同
- 2025年度超市转让与节假日商品配送服务合同
- 2025年度污水处理设施清运与环保技术研发合同
- 二零二五年度美发行业员工责任合同
- 二零二五年度劳动合同终止或解除证明及经济补偿核算书
- 2025年手机配件购买合同
- 2025年旅游购物补贴合同
- 企业云计算服务合同
- 装修装饰合同
- 物业管理委托合同书
- 2024年胡麻油市场前景分析:全球胡麻油市场规模达到了25.55亿美元
- 《 西门塔尔牛脸数据集的研究》范文
- 八年级上册 第三单元 11《简爱》公开课一等奖创新教学设计
- 中小商业银行数字化转型现状及对策研究
- 亲子非暴力沟通培训讲座
- 保险投诉处理流程培训
- JJG 707-2014扭矩扳子行业标准
- 2025财年美国国防预算概览-美国国防部(英)
- 2024年江西省南昌市中考一模数学试题(含答案)
- 《采暖空调节能技术》课件
- 游戏综合YY频道设计模板
评论
0/150
提交评论