版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省四校高一数学第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为5的正方形将其包含在内,并向该正方形内随机投掷1000个点,己知恰有400个点落在阴影部分,据此可估计阴影部分的面积是A.2 B.3 C.10 D.152.已知平面向量=(1,-3),=(4,-2),与垂直,则是()A.2 B.1 C.-2 D.-13.如图,PA垂直于以AB为直径的圆所在平面,C为圆上异于A,B的任意一点,垂足为E,点F是PB上一点,则下列判断中不正确的是()﹒A.平面PAC B. C. D.平面平面PBC4.若三点共线,则()A.13 B. C.9 D.5.在1和19之间插入个数,使这个数成等差数列,若这个数中第一个为,第个为,当取最小值时,的值是()A.4 B.5 C.6 D.76.已知,,且,,则的值为()A. B.1 C. D.7.已知函数,且此函数的图象如图所示,由点的坐标是()A. B. C. D.8.正三角形的边长为,如图,为其水平放置的直观图,则的周长为()A. B. C. D.9.已知,且,则下列不等式正确的是()A. B. C. D.10.设是平面内的一组基底,则下面四组向量中,能作为基底的是()A.与 B.与C.与 D.与二、填空题:本大题共6小题,每小题5分,共30分。11.辗转相除法,又名欧几里得算法,是求两个正整数之最大公约数的算法,它是已知最古老的算法之一,在中国则可以追溯至汉朝时期出现的《九章算术》.下图中的程序框图所描述的算法就是辗转相除法.若输入、的值分别为、,则执行程序后输出的的值为______.12.在正四面体中,棱与所成角大小为________.13.已知是定义在上的奇函数,对任意实数满足,,则________.14.不等式的解集为________15.当,时,执行完如图所示的一段程序后,______.16.和2的等差中项的值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.数列中,,,.(1)证明:数列是等比数列.(2)若,,且,求的值.18.甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图所示.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.19.已知数列{an}和{bn}满足a1=1,b1=0,,.(1)证明:{an+bn}是等比数列,{an–bn}是等差数列;(2)求{an}和{bn}的通项公式.20.已知的三个顶点,,.(1)求边所在直线的方程;(2)求边上中线所在直线的方程.21.已知是定义域为R的奇函数,当时,.Ⅰ求函数的单调递增区间;Ⅱ,函数零点的个数为,求函数的解析式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据古典概型概率公式以及几何概型概率公式分别计算概率,解方程可得结果.【详解】设阴影部分的面积是s,由题意得4001000【点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.2、D【解析】
试题分析:,由与垂直可知考点:向量垂直与坐标运算3、C【解析】
根据线面垂直的性质及判定,可判断ABC选项,由面面垂直的判定可判断D.【详解】对于A,PA垂直于以AB为直径的圆所在平面,而底面圆面,则,又由圆的性质可知,且,则平面PAC.所以A正确;对于B,由A可知,由题意可知,且,所以平面,而平面,所以,所以B正确;对于C,由B可知平面,因而与平面不垂直,所以不成立,所以C错误.对于D,由A、B可知,平面PAC,平面,由面面垂直的性质可得平面平面PBC.所以D正确;综上可知,C为错误选项.故选:C.【点睛】本题考查了线面垂直的性质及判定,面面垂直的判定定理,属于基础题.4、D【解析】
根据三点共线,有成立,解方程即可.【详解】因为三点共线,所以有成立,因此,故本题选D.【点睛】本题考查了斜率公式的应用,考查了三点共线的性质,考查了数学运算能力.5、B【解析】
设等差数列公差为,可得,再利用基本不等式求最值,从而求出答案.【详解】设等差数列公差为,则,从而,此时,故,所以,即,当且仅当,即时取“=”,又,解得,所以,所以,故选:B.【点睛】本题主要考查数列和不等式的综合运用,需要学生对所学知识融会贯通,灵活运用.6、A【解析】
由已知求出,的值,再由,展开两角差的余弦求解,即可得答案.【详解】由,,且,,,,∴,∴,.故选:A.【点睛】本题考查两角和与差的余弦、倍角公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意“拆角配角”思想的运用.7、B【解析】
先由函数图象与轴的相邻两个交点确定该函数的最小正周期,并利用周期公式求出的值,再将点代入函数解析式,并结合函数在该点附近的单调性求出的值,即可得出答案。【详解】解:由图象可得函数的周期∴,得,将代入可得,∴(注意此点位于函数减区间上)∴由可得,∴点的坐标是,故选:B.【点睛】本题考查利用图象求三角函数的解析式,其步骤如下:①求、:,;②求:利用一些关键点求出最小正周期,再由公式求出;③求:代入关键点求出初相,如果代对称中心点要注意附近的单调性。8、C【解析】
根据斜二测画法以及正余弦定理求解各边长再求周长即可.【详解】由斜二测画法可知,,,.所以.故..故.所以的周长为.故选:C【点睛】本题主要考查了斜二测画法的性质以及余弦定理在求解三角形中线段长度的运用.属于基础题.9、B【解析】
通过反例可排除;根据的单调性可知正确.【详解】当,时,,,则错误;当,时,,则错误;由单调递增可知,当时,,则正确本题正确选项:【点睛】本题考查不等关系的判断,解决此类问题常采用排除法,属于基础题.10、C【解析】
利用向量可以作为基底的条件是,两个向量不共线,由此分别判定选项中的两个向量是否共线即可.【详解】由是平面内的一组基底,所以和不共线,对应选项A:,所以这2个向量共线,不能作为基底;对应选项B:,所以这2个向量共线,不能作为基底;对应选项D:,所以这2个向量共线,不能作为基底;对应选项C:与不共线,能作为基底.故选:C.【点睛】本题主要考查基底的定义,判断2个向量是否共线的方法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
程序的运行功能是求,的最大公约数,根据辗转相除法可得的值.【详解】由程序语言知:算法的功能是利用辗转相除法求、的最大公约数,当输入的,,;,,可得输出的.【点睛】本题主要考查了辗转相除法的程序框图的理解,掌握辗转相除法的操作流程是解题关键.12、【解析】
根据正四面体的结构特征,取中点,连,,利用线面垂直的判定证得平面,进而得到,即可得到答案.【详解】如图所示,取中点,连,,正四面体是四个全等正三角形围成的空间封闭图形,所有棱长都相等,所以,,且,所以平面,又由平面,所以,所以棱与所成角为.【点睛】本题主要考查了异面直线所成角的求解,以及直线与平面垂直的判定及应用,着重考查了推理与论证能力,属于基础题.13、【解析】
由奇函数的性质得出,由题中等式可推出函数是以为周期的周期函数,再利用周期性和奇偶性求出的值.【详解】函数是定义在上的奇函数,则,且对任意实数满足,,所以,函数是以为周期的周期函数,,,因此,,故答案为:.【点睛】本题考查抽象函数求值,利用题中条件推导出函数的周期是解题的关键,在计算时充分利用函数的周期性将自变的值的绝对值变小,考查逻辑推理能力与计算能力,属于中等题.14、【解析】因为所以,即不等式的解集为.15、1【解析】
模拟程序运行,可得出结论.【详解】时,满足,所以.故答案为:1.【点睛】本题考查程序框图,考查条件结构,解题时模拟程序运行即可.16、【解析】
根据等差中项性质求解即可【详解】设等差中项为,则,解得故答案为:【点睛】本题考查等差中项的求解,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)9或35或133【解析】
(1)分别写出和,做商,再用表示出,代入即可得q,由可得,得证;(2)由(1)得数列的通项公式,代入并整理,根据即得m+n的值。【详解】(1)证明:因为,所以,所以.因为,所以,所以.因为,所以.故数列是以2为首项,为公比的等比数列.(2)解:由(1)可得.因为,所以,整理得,则.因为,,所以,则的值为2或4或6.当时,,,符合题意,则;当时,,,符合题意,则;当时,,,符合题意,则.综上,的值为9或35或133.【点睛】本题考查求数列通项公式和已知通项公式求参数的和,解题关键在于细心验证m取值是否满足题干要求。18、(1)答案见解析;(2)答案见解析.【解析】试题分析:(1)由图象可得甲、乙两人五次测试的成绩分别为,甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.根据平均数,方差的公式代入计算得解(2)由可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.试题解析:(1)由图象可得甲、乙两人五次测试的成绩分别为甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.=13,=13,×[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4,×[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.(2)由可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.19、(1)见解析;(2),.【解析】
(1)可通过题意中的以及对两式进行相加和相减即可推导出数列是等比数列以及数列是等差数列;(2)可通过(1)中的结果推导出数列以及数列的通项公式,然后利用数列以及数列的通项公式即可得出结果.【详解】(1)由题意可知,,,,所以,即,所以数列是首项为、公比为的等比数列,,因为,所以,数列是首项、公差为的等差数列,.(2)由(1)可知,,,所以,.【点睛】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题.20、(1)(2)【解析】
(1)由直线的两点式方程求解即可;(2)先由中点坐标公式求出中点的坐标,再结合直线的两点式方程求解即可.【详解】(1)因为,,由直线的两点式方程可得:边所在直线的方程,化简可得;(2)由,,则中点,即,则边上中线所在直线的方程为,化简可得.【点睛】本题考查了中点坐标公式,重点考查了直线的两点式方程,属基础题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上虞市2024年一级造价工程师《土建计量》深度预测试卷含解析
- 山东省泰安市肥城市2024年一级造价工程师《土建计量》预测试题含解析
- 安徽省亳州市涡阳县高炉镇普九学校2024-2025学年九年级上学期期末道德与法治试卷(含答案)
- 《货物入库管讲》课件
- 理科教师物理教学模板
- 《光传感光调制》课件
- 党员双育计划实施方案
- 传染病诊疗规范标准
- 和平区园林假山施工方案
- 《海尔空调上门维修》课件
- 考研计算机学科专业基础(408)研究生考试试卷与参考答案(2025年)
- 2024秋期国家开放大学专科《政治学原理》一平台在线形考(形考任务一至四)试题及答案
- 食堂智能点餐系统方案
- 化工和危险化学品企业评估分级指南(大中型企业版)
- 2024版抗菌药物DDD值速查表
- 学生干部培训2024年学生干部培训方案
- 大学实训室虚拟仿真平台网络VR实训室方案(建筑学科)
- 静脉治疗护理技术操作标准
- 教育心理学-形考作业4(第十至十一章)-国开-参考资料
- 银行零星装饰维修投标方案(技术方案)
- 2025届高三地理二轮复习课件土壤中的循环与收支平衡
评论
0/150
提交评论