上海市松江区市级名校2025届数学高一下期末联考试题含解析_第1页
上海市松江区市级名校2025届数学高一下期末联考试题含解析_第2页
上海市松江区市级名校2025届数学高一下期末联考试题含解析_第3页
上海市松江区市级名校2025届数学高一下期末联考试题含解析_第4页
上海市松江区市级名校2025届数学高一下期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市松江区市级名校2025届数学高一下期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,若,那么是()A.直角三角形 B.钝角三角形 C.锐角三角形 D.不能确定2.圆心为且过原点的圆的一般方程是A. B.C. D.3.已知四棱锥的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为,SE与平面ABCD所成的角为β,二面角S-AB-C的平面角为,则()A. B. C. D.4.执行如图所示的程序,已知的初始值为,则输出的的值是()A. B. C. D.5.已知函数若关于的方程恰有两个互异的实数解,则的取值范围为A. B. C. D.6.(2018年天津卷文)设变量x,y满足约束条件则目标函数的最大值为A.6 B.19 C.21 D.457.已知直线与直线平行,则实数m的值为()A.3 B.1 C.-3或1 D.-1或38.设集合,则A. B. C. D.9.过△ABC的重心任作一直线分别交边AB,AC于点D、E.若,,,则的最小值为()A.4 B.3 C.2 D.110.已知实心铁球的半径为,将铁球熔成一个底面半径为、高为的圆柱,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线与圆的位置关系是______.12.设向量,且,则__________.13.设,满足约束条件,则的最小值是______.14.在等比数列中,,,则__________.15.设数列的通项公式为,则_____.16.圆上的点到直线4x+3y-12=0的距离的最小值是三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图1,ABCD为菱形,∠ABC=60°,△PAB是边长为2的等边三角形,点M为AB的中点,将△PAB沿AB边折起,使平面PAB⊥平面ABCD,连接PC、PD,如图2,(1)证明:AB⊥PC;(2)求PD与平面ABCD所成角的正弦值(3)在线段PD上是否存在点N,使得PB∥平面MC?若存在,请找出N点的位置;若不存在,请说明理由18.2013年11月,总书记到湖南湘西考察时首次作出了“实事求是、因地制宜、分类指导精准扶贫”的重要指示.2014年1月,中央详细规制了精准扶贫工作模式的顶层设计,推动了“精准扶贫”思想落地.2015年1月,精准扶贫首个调研地点选择了云南,标志着精准扶贫正式开始实行.某单位立即响应党中央号召,对某村6户贫困户中的甲户进行定点帮扶,每年跟踪调查统计一次,从2015年1月1日至2018年12月底统计数据如下(人均年纯收入):年份2015年2016年2017年2018年年份代码1234收入(百元)25283235(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程,并估计甲户在2019年能否脱贫;(注:国家规定2019年脱贫标准:人均年纯收入为3747元)(2)2019年初,根据扶贫办的统计知,该村剩余5户贫困户中还有2户没有脱贫,现从这5户中抽取2户,求至少有一户没有脱贫的概率.参考公式:,,其中为数据的平均数.19.甲乙两地生产某种产品,他们可以调出的数量分别为300吨、750吨.A,B,C三地需要该产品数量分别为200吨,450吨,400吨,甲地运往A,B,C三地的费用分别为6元/吨、3元/吨,5元/吨,乙地运往A,B,C三地的费用分别为5元/吨,9元/吨,6元/吨,问怎样调运,才能使总运费最小?20.已知,设.(1)若图象中相邻两条对称轴间的距离不小于,求的取值范围;(2)若的最小正周期为,且当时,的最大值是,求的解析式,并说明如何由的图象变换得到的图象.21.如图所示,一个半圆和长方形组成的铁皮,长方形的边为半圆的直径,为半圆的圆心,,,现要将此铁皮剪出一个三角形,使得,.(1)设,求三角形铁皮的面积;(2)求剪下的铁皮三角形的面积的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由tanAtanB>1可得A,B都是锐角,故tanA和tanB都是正数,可得tan(A+B)<0,故A+B为钝角,C为锐角,可得结论.【详解】由△ABC中,A,B,C为三个内角,若tanAtanB>1,可得A,B都是锐角,故tanA和tanB都是正数,∴tan(A+B)0,故A+B为钝角.由三角形内角和为180°可得,C为锐角,故△ABC是锐角三角形,故选C.【点睛】本题考查根据三角函数值的符号判断角所在的范围,两角和的正切公式的应用,判断A+B为钝角,是解题的关键.2、D【解析】

根据题意,求出圆的半径,即可得圆的标准方程,变形可得其一般方程。【详解】根据题意,要求圆的圆心为,且过原点,且其半径,则其标准方程为,变形可得其一般方程是,故选.【点睛】本题主要考查圆的方程求法,以及标准方程化成一般方程。3、C【解析】

根据题意,分别求出SE与BC所成的角、SE与平面ABCD所成的角β、二面角S-AB-C的平面角的正切值,由正四棱锥的线段大小关系即可比较大小.【详解】四棱锥的底面是正方形,侧棱长均相等,所以四棱锥为正四棱锥,(1)过作,交于,过底面中心作交于,连接,取中点,连接,如下图(1)所示:则;(2)连接如下图(2)所示,则;(3)连接,则,如下图(3)所示:因为所以,而均为锐角,所以故选:C.【点睛】本题考查了异面直线夹角、直线与平面夹角、平面与平面夹角的求法,属于中档题.4、C【解析】

第一次运行:,满足循环条件因而继续循环;接下来继续写出第二次、第三次运算,直至,然后输出的值.【详解】初始值第一次运行:,满足循环条件因而继续循环;第二次运行:,满足循环条件因而继续循环;第三次运行:,不满足循环条件因而继续循环,跳出循环;此时.故选:C【点睛】本题是一道关于循环结构的问题,需要借助循环结构的相关知识进行解答,需掌握循环结构的两种形式,属于基础题.5、D【解析】

画出图象及直线,借助图象分析.【详解】如图,当直线位于点及其上方且位于点及其下方,或者直线与曲线相切在第一象限时符合要求.即,即,或者,得,,即,得,所以的取值范围是.故选D.【点睛】根据方程实根个数确定参数范围,常把其转化为曲线交点个数,特别是其中一条为直线时常用此法.6、C【解析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.本题选择C选项.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.7、B【解析】

两直线平行应该满足,利用系数关系及可解得m.【详解】两直线平行,可得(舍去).选B.【点睛】两直线平行的一般式对应关系为:,若是已知斜率,则有,截距不相等.8、B【解析】,选B.【考点】集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.9、B【解析】

利用重心以及向量的三点共线的结论得到的关系式,再利用基本不等式求最小值.【详解】设重心为,因为重心分中线的比为,则有,,则,又因为三点共线,所以,则,取等号时.故选B.【点睛】(1)三角形的重心是三条中线的交点,且重心分中线的比例为;(2)运用基本不等式时,注意取等号时条件是否成立.10、B【解析】

根据变化前后体积相同计算得到答案.【详解】故答案选B【点睛】本题考查了球体积,圆柱体积,抓住变化前后体积不变是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、相交【解析】

由直线系方程可得直线过定点,进而可得点在圆内部,即可得到位置关系.【详解】化直线方程为,令,解得,所以直线过定点,又圆的圆心坐标为,半径,而,所以点在圆内部,故直线与圆的位置关系是相交.故答案为:相交.【点睛】本题考查直线与圆位置关系的判断,考查直线系方程的应用,属于基础题.12、【解析】因为,所以,故答案为.13、1【解析】

根据不等式组,画出可行域,数形结合求解即可.【详解】由题可知,可行域如下图所示:容易知:,可得:,结合图像可知,的最小值在处取得,则.故答案为:1.【点睛】本题考查线性规划的基础问题,只需作出可行域,数形结合即可求解.14、8【解析】

可先计算出公比,从而利用求得结果.【详解】因为,所以,所以,则.【点睛】本题主要考查等比数列基本量的相关计算,难度很小.15、【解析】

根据数列的通项式求出前项和,再极限的思想即可解决此题。【详解】数列的通项公式为,则,则答案.故为:.【点睛】本题主要考查了给出数列的通项式求前项和以及极限。求数列的前常用的方法有错位相减、分组求和、列项相消等。本题主要利用了分组求和的方法。16、【解析】

计算出圆心到直线的距离,减去半径,求得圆上的点到直线的最小距离.【详解】圆的圆心为,半径.圆心到直线的距离为,故最小距离为.【点睛】本小题主要考查圆上的点到直线距离最小值的求法,考查点到直线距离公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2).(3)存在,PN.【解析】

(1)只需证明AB⊥面PMC,即可证明AB⊥PC;(2)由PM⊥面ABCD得∠PDM为PD与平面ABCD所成角,解△PDM即可求得PD与平面ABCD所成角的正弦值.(3)设DB∩MC=E,连接NE,可得PB∥NE,.即可.【详解】(1)证明:∵△PAB是边长为2的等边三角形,点M为AB的中点,∴PM⊥AB.∵ABCD为菱形,∠ABC=60°.∴CM⊥AB,且PM∩MC=M,∴AB⊥面PMC,∵PC⊂面PMC,∴AB⊥PC;(2)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PM⊥AB.∴PM⊥面ABCD,∴∠PDM为PD与平面ABCD所成角.PM,MD,PDsin∠PMD,即PD与平面ABCD所成角的正弦值为.(3)设DB∩MC=E,连接NE,则有面PBD∩面MNC=NE,∵PB∥平面MNC,∴PB∥NE.∴.线段PD上存在点N,使得PB∥平面MNC,且PN.【点睛】本题考查了面面垂直的性质定理、线面垂直的判定定理、线面角,利用线面平行的性质定理确定点N的位置是关键,属于中档题..18、(1);甲户在2019年能够脱贫;(2)【解析】

(1)由已知数据求得与的值,得到线性回归方程,取求得值,说明甲户在2019年能否脱贫;(2)列出从该村剩余5户贫困户中任取2户的所有可能情况,利用随机事件的概率计算公式求解.【详解】(1)根据表格中数据可得,,由,,可得.∴关于的线性回归方程,当时,(百元),∵3850>3747,∴甲户在2019年能够脱贫;(2)设没有脱贫的2户为,另3户为,所有可能的情况为:共有10种可能.其中至少有一户没有脱贫的可能情况有7种.∴至少有一户没有脱贫的概率为.【点睛】本题主要考查线性回归方程的求法,考查随机事件概率的求法,是中档题.19、甲到B调运300吨,从乙到A调运200吨,从乙到B调运150吨,从乙到C调运400吨,总运费最小【解析】

设从甲到A调运吨,从甲到B调运吨,则由题设可得,总的费用为,利用线性规划可求目标函数的最小值.【详解】设从甲到A调运吨,从甲到B调运吨,从甲到C调运吨,则从乙到A调运吨,从乙到B调运吨,从乙到C调运吨,设调运的总费用为元,则.由已知得约束条件为,可行域如图所示,平移直线可得最优解为.甲到B调运300吨,从乙到A调运200吨,从乙到B调运150吨,从乙到C调运400吨,总运费最小.【点睛】本题考查线性规划在实际问题中的应用,属于基础题.20、(1);(2);平移变换过程见解析.【解析】

(1)根据平面向量的坐标运算,表示出的解析式,结合辅助角公式化简三角函数式.结合相邻两条对称轴间的距离不小于及周期公式,即可求得的取值范围;(2)根据最小正周期,求得的值.代入解析式,结合正弦函数的图象、性质与的最大值是,即可求得的解析式.再根据三角函数图象平移变换,即可描述变换过程.【详解】∵∴∴(1)由题意可知,∴又,∴(2)∵,∴∴∵,∴∴当即时∴∴将图象上所有点向右平移个单位,得到的图象;再将得到的图象上所有点的横坐标变为原来的倍,纵坐标不变,得到的图象(或将图象上所有点的横坐标变为原来的倍,纵坐标不变,得到的图象;再将得到的图象上所有点向右平移个单位,得到的图象)【点睛】本题考查了正弦函数图像与性质的综合应用,根据最值求三角函数解析式,三角函数图象平移变换过程,属于中档题.21、(1)三角形铁皮的面积为;(2)剪下的铁皮三角形的面积的最大值为.【解析】试题分析:(1)利用锐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论