版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省佳木斯一中2024届数学高一下期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,为正方体,下面结论错误的是()A.平面B.C.平面D.异面直线与所成的角为2.若向量互相垂直,且,则的值为()A. B. C. D.3.在中,已知,且,则的值是()A. B. C. D.4.已知,,,则()A. B. C. D.5.在平面直角坐标系中,直线与x、y轴分别交于点、,记以点为圆心,半径为r的圆与三角形的边的交点个数为M.对于下列说法:①当时,若,则;②当时,若,则;③当时,M不可能等于3;④M的值可以为0,1,2,3,4,5.其中正确的个数为()A.1 B.2 C.3 D.46.在钝角三角形ABC中,若B=45°,a=2,则边长cA.(1,2) B.(0,1)∪(7.设,则的取值范围是()A. B. C. D.8.如图,一个边长为的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入了粒芝麻,经过统计,落在月牙形图案内的芝麻有粒,则这个月牙图案的面积约为()A. B. C. D.9.已知a、b是两条不同的直线,、是两个不同的平面,若,,,则下列三个结论:①、②、③.其中正确的个数为()A.0 B.1 C.2 D.310.在各项均为正数的等比数列中,公比,若,,,数列的前项和为,则取最大值时,的值为()A. B. C. D.或二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列的首项为,公比为,其前项和为,下列命题中正确的是______.(写出全部正确命题的序号)(1)等比数列单调递增的充要条件是,且;(2)数列:,,,……,也是等比数列;(3);(4)点在函数(,为常数,且,)的图像上.12.设,则的值是____.13.若,则=.14.一个等腰三角形的顶点,一底角顶点,另一顶点的轨迹方程是___15.异面直线,所成角为,过空间一点的直线与直线,所成角均为,若这样的直线有且只有两条,则的取值范围为___________________.16.已知三点、、共线,则a=_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.请你帮忙设计2010年玉树地震灾区小学的新校舍,如图,在学校的东北力有一块地,其中两面是不能动的围墙,在边界内是不能动的一些体育设施.现准备在此建一栋教学楼,使楼的底面为一矩形,且靠围墙的方向须留有5米宽的空地,问如何设计,才能使教学楼的面积最大?18.如图,四棱锥中,底面,,,点在线段上,且.(1)求证:平面;(2)若,,,求四棱锥的体积;19.在中,分别是角的对边.(1)求角的值;(2)若,且为锐角三角形,求的范围.20.在中,、、分别是内角、、的对边,且.(1)求角的大小;(2)若,的面积为,求的周长.21.如图,在正方体,中,,,,,分别是棱,,,,的中点.(1)求证:平面平面;(2)求平面将正方体分成的两部分体积之比.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
在正方体中与
平行,因此有与平面
平行,A正确;在平面
内的射影垂直于,因此有,B正确;与B同理有与
垂直,从而
平面
,C正确;由知与所成角为45°,D错.故选D.2、B【解析】
首先根据题意得到,再计算即可.【详解】因为向量互相垂直,,所以.所以.故选:B【点睛】本题主要考查平面向量模长的计算,同时考查了平面向量数量积,属于简单题.3、C【解析】
由正弦定理边角互化思想得,由可得出的三边长,可判断出三角形的形状,由此可得出的值,再利用平面向量数量积的定义可计算出的值.【详解】,,,,,,为等腰直角三角形,.因此,,故选C.【点睛】本题考查正弦定理边角互化思想的应用,同时也考查了平面向量数量积定义的计算,在求平面向量数量积的计算时,要注意向量的起点要一致,考查运算求解能力,属于中等题.4、C【解析】
利用指数函数、对数函数的单调性即可求解.【详解】为减函数,,为增函数,,为增函数,,所以,故.故选:C【点睛】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题.5、B【解析】
作出直线,可得,,,分别考虑圆心和半径的变化,结合图形,即可得到所求结论.【详解】作出直线,可得,,,①当时,若,当圆与直线相切,可得;当圆经过点,即,则或,故①错误;②当时,若,圆,当圆经过O时,,交点个数为2,时,交点个数为1,则,故②正确;③当时,圆,随着的变化可得交点个数为1,2,0,不可能等于3,故③正确;④的值可以为0,1,2,3,4,不可以为5,故④错误.故选:B.【点睛】本题考查命题的真假判断与应用,考查直线和圆的位置关系,考查分析能力和计算能力.6、D【解析】试题分析:解法一:,由三角形正弦定理诱导公式有,利用三角恒等公式能够得到,当A为锐角时,0∘<A<45∘,,即,当A为钝角时,90∘<A<135∘,,综上所述,;解法二:利用图形,如图,,,当点A(D)在线段BE上时(不含端点B,E),为钝角,此时;当点A在线段EF上时,为锐角三角形或直角三角形;当点A在射线FG(不含端点F)上时,为钝角,此时,所以c的取值范围为.考点:解三角形.【思路点睛】解三角形需要灵活运用正余弦定理以及三角形的恒等变形,在解答本题时,利用三角形内角和,将两角化作一角,再利用正弦定理即可列出边长c与角A的关系式,根据角A的取值范围即可求出c的范围,本题亦可利用物理学中力的合成,合力的大小来确定c的大小,正如解法二所述.7、B【解析】
由同向不等式的可加性求解即可.【详解】解:因为,所以,又,,所以,故选:B.【点睛】本题考查了不等式的性质,属基础题.8、A【解析】
根据几何概型直接进行计算即可.【详解】月牙形图案的面积约为:本题正确选项:【点睛】本题考查几何概型的应用,属于基础题.9、C【解析】
根据题意,,,,则有,因此,,不难判断.【详解】因为,,,则有,所以,,所以①正确,②不正确,③正确,则其中正确命题的个数为2.故选C【点睛】本题考查空间中直线与平面之间的位置关系,考查空间推理能力,属于简单题.10、D【解析】
利用等比数列的性质求出、的值,可求出和的值,利用等比数列的通项公式可求出,由此得出,并求出数列的前项和,然后求出,利用二次函数的性质求出当取最大值时对应的值.【详解】由题意可知,由等比数列的性质可得,解得,所以,解得,,,则数列为等差数列,,,,因此,当或时,取最大值,故选:D.【点睛】本题考查等比数列的性质,同时也考查了等差数列求和以及等差数列前项和的最值,在求解时将问题转化为二次函数的最值求解,考查方程与函数思想的应用,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、(3)【解析】
根据递增数列的概念,以及等比数列的通项公式,充分条件与必要条件的概念,可判断(1);令,为偶数,可判断(2);根据等比数列的性质,直接计算,可判断(3);令,结合题意,可判断(4),进而可得出结果.【详解】(1)若等比数列单调递增,则,所以或,故且不是等比数列单调递增的充要条件;(1)错;(2)若,为偶数,则,,因等比数列中的项不为,故此时数列,,,……,不成等比数列;(2)错;(3),所以(3)正确;(4)若,则,若点在函数的图像上,则,因,,故不能对任意恒成立;故(4)错.故答案为:(3)【点睛】本题主要考命题真假的判定,熟记等比数列的性质,以及等比数列的通项公式与求和公式即可,属于常考题型.12、【解析】
根据二倍角公式得出,再根据诱导公式即可得解.【详解】解:由题意知:故,即.故答案为.【点睛】本题考查了二倍角公式和诱导公式的应用,属于基础题.13、【解析】.14、【解析】
设出点C的坐标,利用|AB|=|AC|,建立方程,根据A,B,C三点构成三角形,则三点不共线且B,C不重合,即可求得结论.【详解】设点的坐标为,则由得,化简得.∵A,B,C三点构成三角形∴三点不共线且B,C不重合因此顶点的轨迹方程为.故答案为【点睛】本题考查轨迹方程,考查学生的计算能力,属于基础题.15、【解析】
将直线,平移到交于点,设平移后的直线为,,如图,过作及其外角的角平分线,根据题意可以求出的取值范围.【详解】将直线,平移到交于点,设平移后的直线为,,如图,过作及其外角的角平分线,异面直线,所成角为,可知,所以,所以在方向,要使有两条,则有:,在方向,要使不存在,则有,综上所述,.故答案为:【点睛】本题考查了异面直线的所成角的有关性质,考查了空间想象能力.16、【解析】
由三点、、共线,则有,再利用向量共线的坐标运算即可得解.【详解】解:由、、,则,,又三点、、共线,则,则,解得:,故答案为:.【点睛】本题考查了向量共线的坐标运算,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、在线段上取点,过点分别作墙的平行线,建一个长、宽都为17米的正方形,教学楼的面积最大【解析】
可建立如图所示的平面直角坐标系,根据截距式写出AB所在直线方程,然后可设G点的坐标为,再根据题目中的要求可列出教学楼的面积的表达式,,然后利用一元二次函数求最值即可.【详解】解:如图建立坐标系,可知所在直线方程为,即.设,由可知.∴.由此可知,当时,有最大值289平方米.故在线段上取点,过点分别作墙的平行线,建一个长、宽都为17米的正方形,教学楼的面积最大.【点睛】本题考查一元二次函数求最值解决实际问题,属于中档题18、(1)证明见解析(2)【解析】
(1)根据底面证得,证得,由此证得平面.(2)利用锥体体积公式,计算出所求锥体体积.【详解】(1)证明:底面,平面,,,,,又,平面,平面,平面.(2),,,∴四边形是矩形,,,又,,,即,.【点睛】本小题主要考查线面垂直的证明,考查锥体体积计算,考查空间想象能力和逻辑推理能力,属于基础题.19、(1);(2)【解析】
(1)由题结合余弦定理得角的值;(2)由正弦定理可知,,得,利用三角恒等变换得A的函数即可求范围【详解】(1)由题意知,∴,由余弦定理可知,,又∵,∴.(2)由正弦定理可知,,即,∴,又∵为锐角三角形,∴,则即,所以,即,综上的取值范围为.【点睛】本题考查正余弦定理解三角形,考查三角恒等变换,注意锐角三角形的应用,准确计算是关键,是中档题20、(1)(2)【解析】
(1)由正弦定理,两角和的正弦函数公式化简已知等式可得,由,可求,结合范围,可求.(2)利用三角形的面积公式可求,进而根据余弦定理可得,即可计算得解的周长的值.【详解】解:(1)∵,∴由正弦定理可得:,即,∵,∴,∵,∴.(2)∵,,的面积为,,∴,∴由余弦定理可得:,∴解得:,∴的周长.【点睛】本题主要考查了正弦定理,两角和的正弦函数公式,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.21、(1)见解析(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度文化传媒内容制作合同
- 2024年大型活动保障车辆租赁合同
- 2024年上海房屋装修工程分包合同
- 2024年廉洁承诺函:双方诚信自律协议
- 教育工作者主要先进事迹(5篇)
- 中学生读书演讲稿
- 2024年度质量控制合同:MLB棒球帽正品知识分享
- 2024年工程监测与检测合同
- 2024室内外演唱会舞台安全检测合同
- 2024年国际商贸合同的科学与艺术
- 呼吸道疾病防控宣传教育培训
- 电池管理系统优化
- 体育课堂数字化教学设计方案
- 2024年中铁高新工业股份有限公司招聘笔试参考题库含答案解析
- 中枢性面瘫与周围性面瘫的区别课件
- 人行安全门通道闸机施工方案
- 《爱情婚姻家庭》课件
- 外卖配送部管理制度
- 护理员服务外包投标方案(技术方案)
- 智能化农业装备
- JGJT241-2011 人工砂混凝土应用技术规范
评论
0/150
提交评论