广西壮族自治区南宁市兴宁区第三中学2023-2024学年高一下数学期末学业质量监测试题含解析_第1页
广西壮族自治区南宁市兴宁区第三中学2023-2024学年高一下数学期末学业质量监测试题含解析_第2页
广西壮族自治区南宁市兴宁区第三中学2023-2024学年高一下数学期末学业质量监测试题含解析_第3页
广西壮族自治区南宁市兴宁区第三中学2023-2024学年高一下数学期末学业质量监测试题含解析_第4页
广西壮族自治区南宁市兴宁区第三中学2023-2024学年高一下数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西壮族自治区南宁市兴宁区第三中学2023-2024学年高一下数学期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B. C. D.2.如果数列的前项和为,则这个数列的通项公式是()A. B. C. D.3.我国魏晋时期的数学家刘徽,创立了用圆内接正多边形面积无限逼近圆面积的方法,称为“割圆术”,为圆周率的研究提供了科学的方法.在半径为1的圆内任取一点,则该点取自圆内接正十二边形外的概率为A. B.C. D.4.在锐角中ΔABC,角A,B所对的边长分别为a,b.若2asinA.π12B.π6C.π5.若点在圆外,则a的取值范围是()A. B. C. D.或6.已知点在第二象限,角顶点为坐标原点,始边为轴的非负半轴,则角的终边落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若数列的前项和为,则下列命题:(1)若数列是递增数列,则数列也是递增数列;(2)数列是递增数列的充要条件是数列的各项均为正数;(3)若是等差数列,则的充要条件是;(4)若是等比数列且,则的充要条件是;其中,正确命题的个数是()A.0个 B.1个 C.2个 D.3个8.已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为的正三角形,E,F分别是PA,AB的中点,∠CEF=90°.则球O的体积为()A. B. C. D.9.过点的直线的斜率为,则等于()A. B.10 C.2 D.410.某几何体的三视图如图所示,它的体积为()A.12π B.45π C.57π D.81π二、填空题:本大题共6小题,每小题5分,共30分。11.函数的零点个数为__________.12.______.13.在半径为的球中有一内接正四棱柱(底面是正方形,侧棱垂直底面),当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是__________.14.若集合,,则集合________.15.从甲、乙、丙、丁四个学生中任选两人到一个单位实习,余下的两人到另一单位实习,则甲、乙两人不在同一单位实习的概率为________.16.在中,,过直角顶点作射线交线段于点,则的概率为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.求:(1)函数的最大值、最小值及最小正周期;(2)函数的单调递增区间.18.已知圆的方程为.(1)求过点且与圆相切的直线的方程;(2)直线过点,且与圆交于两点,若,求直线的方程;(3)是圆上一动点,,若点为的中点,求动点的轨迹方程.19.在中,角所对的边分别为,满足(1)求的值;(2)若,求b的取值范围.20.已知圆C过点,且圆心C在直线上.(1)求圆C的标准方程;(2)若过点(2,3)的直线被圆C所截得的弦的长是,求直线的方程.21.已知某公司生产某款手机的年固定成本为400万元,每生产1万部还需另投入160万元.设公司一年内共生产该款手机x(x≥40)万部且并全部销售完,每万部的收入为R(x)万元,且R(x)=74000(1)写出年利润W(万元)关于年产量x(万部)的函数关系式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积.详解:根据题意,可得截面是边长为的正方形,结合圆柱的特征,可知该圆柱的底面为半径是的圆,且高为,所以其表面积为,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.2、B【解析】

根据,当时,,再结合时,,可知是以为首项,为公比的等比数列,从而求出数列的通项公式.【详解】由,当时,,所以,当时,,此时,所以,数列是以为首项,为公比的等比数列,即.故选:B.【点睛】本题考查了利用递推公式求数列的通项公式,考查了计算能力,属于基础题.3、D【解析】

由半径为1的圆内接正十二边形,可分割为12个顶角为,腰为1的等腰三角形,求得十二边形的面积,利用面积比的几何概型,即可求解.【详解】由题意,半径为1的圆内接正十二边形,可分割为12个顶角为,腰为1的等腰三角形,所以该正十二边形的面积为,由几何概型的概率计算公式,可得所求概率,故选D.【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A的基本事件对应的“几何度量”,再求出总的基本事件对应的“几何度量”,然后根据求解,着重考查了分析问题和解答问题的能力.4、D【解析】试题分析:∵2a考点:正弦定理解三角形5、C【解析】

先由表示圆可得,然后将点代入不等式即可解得答案【详解】由表示圆可得,即因为点在圆外所以,即综上:a的取值范围是故选:C【点睛】点与圆的位置关系(1)在圆外(2)在圆上(3)在圆内6、C【解析】

根据点的位置,得到不等式组,进行判断角的终边落在的位置.【详解】点在第二象限在第三象限,故本题选C.【点睛】本题考查了通过角的正弦值和正切值的正负性,判断角的终边位置,利用三角函数的定义是解题的关键.7、B【解析】

对各选项逐个论证或给出反例后可得正确的命题的个数.【详解】对于(1),取,则,因该数列的公差为,故是递增数列.,故,所以数列不是递增数列,故(1)错.对于(2),取,则,数列是递增数列,但,故数列是递增数列推不出的各项均为正数,故(2)错.对于(3),取,则,,故当时,但总成立,故总成立,故推不出,故(3)错.对于(4),设公比为,若,若,则,,矛盾,故.又,故必存在,使得即,即,所以,故,所以是的必要条件.若,则,所以,所以,所以是的充分条件故的充要条件是,故(4)正确.故选:B.【点睛】本题考查数列的单调性、数列的前项和的单调性以及等比数列前项和的积的性质,对于等差数列的单调性,我们可以求出前项和关于的二次函数的形式,再由二次函数的性质讨论其单调性,也可以根据项的符号来判断前项和的单调性.应用等比数列的求和公式时,注意对公比是否为1分类讨论.8、D【解析】

计算可知三棱锥P-ABC的三条侧棱互相垂直,可得球O是以PA为棱的正方体的外接球,球的直径,即可求出球O的体积.【详解】在△PAC中,设,,,,因为点E,F分别是PA,AB的中点,所以,在△PAC中,,在△EAC中,,整理得,因为△ABC是边长为的正三角形,所以,又因为∠CEF=90°,所以,所以,所以.又因为△ABC是边长为的正三角形,所以PA,PB,PC两两垂直,则球O是以PA为棱的正方体的外接球,则球的直径,所以外接球O的体积为.故选D.【点睛】本题考查了三棱锥的外接球,考查了学生的空间想象能力,属于中档题.9、B【解析】

直接应用斜率公式,解方程即可求出的值.【详解】因为过点的直线的斜率为,所以有,故本题选B.【点睛】本题考查了直线斜率公式,考查了数学运算能力.10、C【解析】由三视图可知,此组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱故它的体积是5×π×32+π×32×=57π故选C二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】

运用三角函数的诱导公式先将函数化简,再在同一直角坐标系中做出两支函数的图像,观察其交点的个数即得解.【详解】由三角函数的诱导公式得,所以令,求零点的个数转化求方程根的个数,因此在同一直角坐标系分别做出和的图象,观察两支图象的交点的个数为个,注意在做的图像时当时,,故得解.【点睛】本题考查三角函数的有界性和余弦函数与对数函数的交点情况,属于中档题.12、【解析】

先令,得到,两式作差,根据等比数列的求和公式,化简整理,即可得出结果.【详解】令,则,两式作差得:所以故答案为:【点睛】本题主要考查数列的求和,熟记错位相加法求数列的和即可,属于常考题型.13、【解析】

根据正四棱柱外接球半径的求解方法可得到正四棱柱底面边长和高的关系,利用基本不等式得到,得到侧面积最大值为;根据球的表面积公式求得球的表面积,作差得到结果.【详解】设球内接正四棱柱的底面边长为,高为则球的半径:正四棱柱的侧面积:球的表面积:当正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差为:本题正确结果:【点睛】本题考查多面体的外接球的相关问题的求解,关键是能够根据外接球半径构造出关于正棱柱底面边长和高的关系式,利用基本不等式求得最值;其中还涉及到球的表面积公式的应用.14、【解析】由题意,得,,则.15、.【解析】

求得从甲、乙、丙、丁四个学生中任选两人的总数和甲、乙两人不在同一单位实习的方法数,由古典概型的概率计算公式可得所求值.【详解】解:从甲、乙、丙、丁四个学生中任选两人的方法数为种,甲、乙两人不在同一单位实习的方法数为种,则甲、乙两人不在同一单位实习的概率为.故答案为:.【点睛】本题主要考查古典概型的概率计算公式,考查运算能力,属于基础题.16、【解析】

设,求出的长,由几何概型概率公式计算.【详解】设,由题意得,,∴的概率是.故答案为:.【点睛】本题考查几何概型,考查长度型几何概型.掌握几何概型概率公式是解题关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最大值,最小值为,最小正周期;(2)【解析】

(1)根据即可求出最值,利用即可求出最小正周期;(2)根据复合函数的单调性,令即可得解.【详解】(1),函数的最大值为,最小值为;函数的最小正周期为.(2)令,得:,故函数的增区间为.【点睛】本题考查了三角函数的性质以及单调区间的求解,属于基础题.18、(1)和;(2)或;(3)【解析】

(1)分斜率存在和不存在两种情况讨论,利用直线与圆相切时,圆心到直线的距离等于半径求解;(2)根据弦长,可求圆心到直线的距离,利用距离公式,可求直线斜率;(3)利用求轨迹方程的方法(代入法)求解.【详解】(1)当斜率不存在时,过点的方程是与圆相切,满足条件,当斜率存在时,设直线方程:,直线与圆相切时,,解得:,.所以,满足条件的直线方程是或.(2)设直线方程:,设圆心到直线的距离,,解得或,所以满足条件的直线方程是或.(3)设,那么,将点代入圆,可得.【点睛】本题考查了直线与圆相切,相交的问题,属于基础题型,这类求直线的问题,需分斜率不存在和存在两种情况讨论,当直线与圆相切时,利用圆心到直线的距离等于半径求解,当直线与圆相交时,可利用弦长公式和圆心到直线的距离求解直线方程.19、(1)(2)【解析】

(1)代入条件化简得,再由同角三角函数基本关系求出;(2)利用余弦定理、,把表示成关于的二次函数.【详解】(1),,即,,,又,解得:.(2),可得,由余弦定理可得:,,所以b的取值范围为.【点睛】对于运动变化问题,常用函数与方程的思想进行研究,所以自然而然想到构造以是关于或的函数.20、(1);(2)或.【解析】

(1)设圆心,由两点间的距离及圆心在直线上,列出方程组,求解即可求出圆心坐标,进而求出半径,写出圆的方程(2)由的长是,求出圆心到直线的距离,然后分直线斜率存在与不存在求解.【详解】(1)设圆C的标准方程为依题意可得:解得,半径.∴圆C的标准方程为;(2),∴圆心到直线m的距离①直线斜率不存在时,直线m方程为:;②直线m斜率存在时,设直线m为.,解得∴直线m的方程为∴直线m的方程为或.【点睛】本题主要考查了圆的标准方程,直线与圆的位置关系,点到直线的距离,属于中档题.21、(1)W=73600-400000x-160x,(x≥40);(2)当x=50【解析】

(1)根据题意,即可求解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论