辽宁省朝阳市朝阳县柳城高中2024届高一下数学期末检测试题含解析_第1页
辽宁省朝阳市朝阳县柳城高中2024届高一下数学期末检测试题含解析_第2页
辽宁省朝阳市朝阳县柳城高中2024届高一下数学期末检测试题含解析_第3页
辽宁省朝阳市朝阳县柳城高中2024届高一下数学期末检测试题含解析_第4页
辽宁省朝阳市朝阳县柳城高中2024届高一下数学期末检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省朝阳市朝阳县柳城高中2024届高一下数学期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若角的顶点与坐标原点重合,始边与x轴的正半轴重合,终边经过点,则()A. B. C. D.2.已知=(2,3),=(3,t),=1,则=A.-3 B.-2C.2 D.33.已知的三边满足,则的内角C为()A. B. C. D.4.从集合中随机抽取一个数,从集合中随机抽取一个数,则向量与向量垂直的概率为()A. B. C. D.5.已知,且,则实数的值为()A.2 B. C.3 D.6.若实数满足,则的最小值为()A.4 B.8 C.16 D.327.在等差数列an中,a1=1,aA.13 B.16 C.32 D.358.若数列{an}是等比数列,且an>0,则数列也是等比数列.若数列是等差数列,可类比得到关于等差数列的一个性质为().A.是等差数列B.是等差数列C.是等差数列D.是等差数列9.函数(其中)的图象如图所示,为了得到的图象,则只要将的图象()A.向右平移 B.向右平移C.向左平移 D.向左平移10.已知数列是各项均为正数且公比不等于1的等比数列,对于函数,若数列为等差数列,则称函数为“保比差数列函数”,现有定义在上的如下函数:①,②,③;④,则为“保比差数列函数”的所有序号为()A.①② B.①②④ C.③④ D.①②③④二、填空题:本大题共6小题,每小题5分,共30分。11.在三棱锥中,平面,是边长为2的正三角形,,则三棱锥的外接球的表面积为__________.12.若实数,满足,则的最小值为________.13.若满足约束条件,则的最小值为_________.14.若当时,不等式恒成立,则实数a的取值范围是_____.15.圆上的点到直线4x+3y-12=0的距离的最小值是16.已知正方形,向正方形内任投一点,则的面积大于正方形面积四分之一的概率是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,,均为锐角,且.(1)求的值;(2)若,求的值.18.如图,单位圆与轴正半轴相交于点,圆上的动点从点出发沿逆时针旋转一周回到点,设(),的面积为(当三点共线时,),与的函数关系如图所示的程序框图.(1)写出程序框图中①②处的函数关系式;(2)若输出的值为,求点的坐标.19.请你帮忙设计2010年玉树地震灾区小学的新校舍,如图,在学校的东北力有一块地,其中两面是不能动的围墙,在边界内是不能动的一些体育设施.现准备在此建一栋教学楼,使楼的底面为一矩形,且靠围墙的方向须留有5米宽的空地,问如何设计,才能使教学楼的面积最大?20.某种汽车,购车费用是10万元,每年使用的保险费和汽油费为万元,年维修费第一年为万元,以后逐年递增万元,问这种汽车使用多少年时,它的年平均费用最少?21.已知数列满足,.(1)求证:数列是等比数列;(2)求数列的通项公式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据三角函数定义结合正弦的二倍角公式计算即可【详解】由题意,∴,,.故选:C.【点睛】本题考查三角函数的定义,考查二倍角的正弦公式,掌握三角函数定义是解题关键.2、C【解析】

根据向量三角形法则求出t,再求出向量的数量积.【详解】由,,得,则,.故选C.【点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.3、C【解析】原式可化为,又,则C=,故选C.4、B【解析】

通过向量垂直的条件即可判断基本事件的个数,从而求得概率.【详解】基本事件总数为,当时,,满足的基本事件有,,,共3个,故所求概率为,故选B.【点睛】本题主要考查古典概型,计算满足条件的基本事件个数是解题的关键,意在考查学生的分析能力.5、D【解析】

根据二角和与差的正弦公式化简,,再切化弦,即可求解.【详解】由题意又解得故选:【点睛】本题考查两角和与差的正弦公式,属于基础题.6、B【解析】

由可以得到,利用基本不等式可求最小值.【详解】因为,故,因为,故,故,当且仅当时等号成立,故的最小值为8,故选B.【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.7、D【解析】

直接利用等差数列的前n项和公式求解.【详解】数列an的前5项和为5故选:D【点睛】本题主要考查等差数列的前n项和的计算,意在考查学生对该知识的理解掌握水平,属于基础题.8、B【解析】试题分析:本题是由等比数列与等差数列的相似性质,推出有关结论:由“等比”类比到“等差”,由“几何平均数”类比到“算数平均数”;所以,所得结论为是等差数列.考点:类比推理.9、A【解析】

利用函数的图像可得,从而可求出,再利用特殊点求出,进而求出三角函数的解析式,再利用三角函数图像的变换即可求解.【详解】由图可知,所以,当时,,由于,解得:,所以,要得到的图像,则需要将的图像向右平移.故选:A【点睛】本题考查了由图像求解析式以及三角函数的图像变换,需掌握三角函数图像变换的原则,属于基础题.10、B【解析】

设数列{an}的公比为q(q≠1),利用保比差数列函数的定义,逐项验证数列{lnf(an)}为等差数列,即可得到结论.【详解】设数列{an}的公比为q(q≠1)①由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnlnlnq是常数,∴数列{lnf(an)}为等差数列,满足题意;②由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnlnq2=2lnq是常数,∴数列{lnf(an)}为等差数列,满足题意;③由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnan+1﹣an不是常数,∴数列{lnf(an)}不为等差数列,不满足题意;④由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnlnq是常数,∴数列{lnf(an)}为等差数列,满足题意;综上,为“保比差数列函数”的所有序号为①②④故选:B.【点睛】本题考查新定义,考查对数的运算性质,考查等差数列的判定,考查学生分析解决问题的能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

设三棱锥的外接球半径为,利用正弦定理求出的外接圆半径,再利用公式可计算出外接球半径,最后利用球体的表面积公式可计算出结果.【详解】由正弦定理可得,的外接圆直径为,,设三棱锥的外接球半径为,平面,,因此,三棱锥的外接球表面积为,故答案为.【点睛】本题考查多面体的外接球,考查球体表面积的计算,在求解直棱柱后直棱锥的外接球,若底面外接圆半径为,高为,可利用公式得出外接球的半径,解题时要熟悉这些结论的应用.12、【解析】

由题意可得=≥2=2,由不等式的性质变形可得.【详解】∵正实数a,b满足,∴=≥2=2,∴ab≥2当且仅当=即a=且b=2时取等号.故答案为2.【点睛】本题考查基本不等式求最值,涉及不等式的性质,属基础题.13、3【解析】

在平面直角坐标系内,画出可行解域,平行移动直线,在可行解域内,找到直线在纵轴上截距最小时所经过点的坐标,代入目标函数中,求出目标函数的最小值.【详解】在平面直角坐标系中,约束条件所表示的平面区域如下图所示:当直线经过点时,直线纵轴上截距最小,解方程组,因此点坐标为,所以的最小值为.【点睛】本题考查了线性目标函数最小值问题,正确画出可行解域是解题的关键.14、【解析】

用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值.【详解】设,是增函数,当时,,不等式化为,即,不等式在上恒成立,时,显然成立,,对上恒成立,由对勾函数性质知在是减函数,时,,∴,即.综上,.故答案为:.【点睛】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.15、【解析】

计算出圆心到直线的距离,减去半径,求得圆上的点到直线的最小距离.【详解】圆的圆心为,半径.圆心到直线的距离为,故最小距离为.【点睛】本小题主要考查圆上的点到直线距离最小值的求法,考查点到直线距离公式,属于基础题.16、【解析】

向正方形内任投一点,所有等可能基本事件构成正方形区域,当的面积大于正方形面积四分之一的所有基本事件构成区域矩形区域,由面积比可得概率值.【详解】如图边长为1的正方形中,分别是的中点,当点在线段上时,的面积为,所以的面积大于正方形面积四分之一,此时点应在矩形内,由几何概型得:,故填.【点睛】本题考查几何概型,利用面积比求概率值,考查对几何概型概率计算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)计算表达出,再根据,两边平方求化简即可求得.(2)根据,再利用余弦的差角公式展开后分别计算求解即可.【详解】(1)由题意,得,,,,.(2),,均为锐角,仍为锐角,,,.【点睛】本题主要考查了根据向量的数量积列出关于三角函数的等式,再利用三角函数中的和差角以及凑角求解的方法.属于中档题.18、(1)见解析;(2)见解析【解析】

(1)通过实际问题得到与的函数关系为分段函数,从而判断出程序框填的结果.(2)分类讨论时和时两种情形下的点Q坐标,从而得到答案.【详解】(1)当时,,当时,函数的解析式为,故程序框图中①②处的函数关系式分别是,(2)时,令,即,或,点的坐标为或时,令,即,或,点的坐标为或故点的坐标为【点睛】本题主要考查算法框图,三角函数的运用,意在考查学生的数形结合思想,分析实际问题的能力.19、在线段上取点,过点分别作墙的平行线,建一个长、宽都为17米的正方形,教学楼的面积最大【解析】

可建立如图所示的平面直角坐标系,根据截距式写出AB所在直线方程,然后可设G点的坐标为,再根据题目中的要求可列出教学楼的面积的表达式,,然后利用一元二次函数求最值即可.【详解】解:如图建立坐标系,可知所在直线方程为,即.设,由可知.∴.由此可知,当时,有最大值289平方米.故在线段上取点,过点分别作墙的平行线,建一个长、宽都为17米的正方形,教学楼的面积最大.【点睛】本题考查一元二次函数求最值解决实际问题,属于中档题20、这种汽车使用年时,它的年平均费用最小【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论