版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省周口市商水县周口中英文学校2024年高一数学第二学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,且,恒成立,则实数的取值范围是()A. B.C. D.2.若不等式的解集为,则()A. B.C. D.3.不等式组所表示的平面区域的面积为()A.1 B. C. D.4.已知非零向量,满足,且,则与的夹角为
A. B. C. D.5.若将函数的图象向左平移个单位长度,平移后的图象关于点对称,则函数在上的最小值是A. B. C. D.6.已知公式为正数的等比数列满足:,,则前5项和()A.31 B.21 C.15 D.117.下列角中终边与相同的角是()A. B. C. D.8.已知点P为圆上一个动点,O为坐标原点,过P点作圆O的切线与圆相交于两点A,B,则的最大值为()A. B.5 C. D.9.若,,则的最小值为()A.2 B. C. D.10.函数在的图像大致为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,,,点为延长线上一点,,连接,则=______.12.在三棱锥中,平面,是边长为2的正三角形,,则三棱锥的外接球的表面积为__________.13.函数在的值域是______________.14.已知呈线性相关的变量,之间的关系如下表所示:由表中数据,得到线性回归方程,由此估计当为时,的值为______.15.已知数列满足,若对任意都有,则实数的取值范围是_________.16.一湖中有不在同一直线的三个小岛A、B、C,前期为开发旅游资源在A、B、C三岛之间已经建有索道供游客观赏,经测量可知AB两岛之间距离为3公里,BC两岛之间距离为5公里,AC两岛之间距离为7公里,现调查后发现,游客对在同一圆周上三岛A、B、C且位于(优弧)一片的风景更加喜欢,但由于环保、安全等其他原因,没办法尽可能一次游览更大面积的湖面风光,现决定在上选择一个点D建立索道供游客游览,经研究论证为使得游览面积最大,只需使得△ADC面积最大即可.则当△ADC面积最大时建立索道AD的长为______公里.(注:索道两端之间的长度视为线段)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的三个顶点,,.(1)求边所在直线的方程;(2)求边上中线所在直线的方程.18.设数列的前项和为,且.(1)求数列的通项公式;(2)若,为数列位的前项和,求;(3)在(2)的条件下,是否存在自然数,使得对一切恒成立?若存在,求出的值;若不存在,说明理由.19.设向量.(Ⅰ)若与垂直,求的值;(Ⅱ)求的最小值.20.已知,且,求的值.21.如图所示,某海轮以30海里/小时的速度航行,在A点测得海面上油井P在南偏东,向北航行40分钟后到达点,测得油井P在南偏东,海轮改为北偏东的航向再行驶80分钟到达C点,求P,C间的距离.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
将代数式与相乘,展开式利用基本不等式求出的最小值,将问题转化为解不等式,解出即可.【详解】由基本不等式得,当且仅当,即当时,等号成立,所以,的最小值为.由题意可得,即,解得.因此,实数的取值范围是,故选A.【点睛】本题考查基本不等式的应用,考查不等式恒成立问题以及一元二次不等式的解法,对于不等式恒成立问题,常转化为最值来处理,考查计算能力,属于中等题.2、D【解析】
根据一元二次不等式的解法,利用韦达定理列方程组,解方程组求得的值.【详解】根据一元二次不等式的解法可知,是方程的两个根,根据韦达定理有,解得,故选D.【点睛】本小题主要考查一元二次不等式的解集与对应一元二次方程根的关系,考查根与系数关系,考查方程的思想,属于基础题.3、D【解析】
画出可行域,根据边界点的坐标计算出平面区域的面积.【详解】画出可行域如下图所示,其中,故平面区域为三角形,且三角形面积为,故选D.【点睛】本小题主要考查线性规划可行域面积的求法,考查数形结合的数学思想方法,属于基础题.4、B【解析】
根据题意,建立与的关系,即可得到夹角.【详解】因为,所以,则,则,所以,所以夹角为故选B.【点睛】本题主要考查向量的数量积运算,难度较小.5、C【解析】
由题意得,故得平移后的解析式为,根据所的图象关于点对称可求得,从而可得,进而可得所求最小值.【详解】由题意得,将函数的图象向左平移个单位长度所得图象对应的解析式为,因为平移后的图象关于点对称,所以,故,又,所以.所以,由得,所以当或,即或时,函数取得最小值,且最小值为.故选C.【点睛】本题考查三角函数的性质的综合应用,解题的关键是求出参数的值,容易出现的错误是函数图象平移时弄错平移的方向和平移量,此时需要注意在水平方向上的平移或伸缩只是对变量而言的.6、A【解析】
由条件求出数列的公比.再利用等比数列的前项求和公式即可得出.【详解】公比为正数的等比数列满足:,则,即.所以,所以.故选:A【点睛】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.7、B【解析】与30°的角终边相同的角α的集合为{α|α=330°+k•360°,k∈Z}当k=-1时,α=-30°,故选B8、A【解析】
作交于,连接设,得,,进而,换元,得,通过求得的范围即可求解【详解】作交于,连接设,则,∴取,∴.显然易知令,,当且仅当等号成立;此时∴故选A【点睛】本题考查圆的几何性质,切线的应用,弦长公式,考查函数最值得求解,考查换元思想,是难题9、D【解析】
根据所给等量关系,用表示出可得.代入中,构造基本不等式即可求得的最小值.【详解】因为,所以变形可得所以由基本不等式可得当且仅当时取等号,解得所以的最小值为故选:D【点睛】本题考查了基本不等式求最值的应用,注意构造合适的基本不等式形式,属于中档题.10、C【解析】
由解析式研究函数的性质奇偶性、特殊函数值的正负,可选择正确的图象.【详解】易知函数()是偶函数,图象关于轴对称,可排除BD,时,,可排除A.故选C.【点睛】本题考查由函数解析式选择函数图象,解题方法是由解析式分析函数的性质,如单调性、奇偶性、函数的极值、最值、特殊值、函数的值的正负等等.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
由题意,画出几何图形.由三线合一可求得,根据补角关系可求得.再结合余弦定理即可求得.【详解】在中,,作,如下图所示:由三线合一可知为中点则所以点为延长线上一点,则在中由余弦定理可得所以故答案为:【点睛】本题考查了等腰三角形性质,余弦定理在解三角形中的应用,属于基础题.12、【解析】
设三棱锥的外接球半径为,利用正弦定理求出的外接圆半径,再利用公式可计算出外接球半径,最后利用球体的表面积公式可计算出结果.【详解】由正弦定理可得,的外接圆直径为,,设三棱锥的外接球半径为,平面,,因此,三棱锥的外接球表面积为,故答案为.【点睛】本题考查多面体的外接球,考查球体表面积的计算,在求解直棱柱后直棱锥的外接球,若底面外接圆半径为,高为,可利用公式得出外接球的半径,解题时要熟悉这些结论的应用.13、【解析】
利用,即可得出.【详解】解:由已知,,又
,
故答案为:.【点睛】本题考查了反三角函数的求值、单调性,考查了推理能力与计算能力,属于中档题.14、【解析】由表格得,又线性回归直线过点,则,即,令,得.点睛:本题考查线性回归方程的求法和应用;求线性回归方程是常考的基础题型,其主要考查线性回归方程一定经过样本点的中心,一定要注意这一点,如本题中利用线性回归直线过中心点求出的值.15、【解析】
由题若对于任意的都有,可得解出即可得出.【详解】∵,若对任意都有,
∴.
∴,
解得.
故答案为.【点睛】本题考查了数列与函数的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.16、【解析】
根据题意画出草图,根据余弦定理求出的值,设点到的距离为,可得,分析可知取最大时,取最大值,然后再对为中点和不是中点两种情况分析,可得的最大值为,然后再根据圆的有关性质和正弦定理,即可求出结果.【详解】根据题意可作出及其外接圆,连接,交于点,连接,如下图:在中,由余弦定理,由为的内角,可知,所以.设的半径为,点到的距离为,点到的距离为,则,故取最大时,取最大值.①当为中点时,由垂径定理知,即,此时,故;②当不是中点时,不与垂直,设此时与所成角为,则,故;由垂线段最短知,此时;综上,当为中点时,到的距离最大,最大值为;由圆周角定理可知,,由垂径定理知,此时点为优弧的中点,故,则,在中,由正弦定理得所以.所以当△ADC面积最大时建立索道AD的长为公里.故答案为:.【点评】本题考查了正弦定理、余弦定理在解决实际问题中的应用,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)由直线的两点式方程求解即可;(2)先由中点坐标公式求出中点的坐标,再结合直线的两点式方程求解即可.【详解】(1)因为,,由直线的两点式方程可得:边所在直线的方程,化简可得;(2)由,,则中点,即,则边上中线所在直线的方程为,化简可得.【点睛】本题考查了中点坐标公式,重点考查了直线的两点式方程,属基础题.18、(1)(2)(3)【解析】
(1)根据题干可推导得到,进而得到数列是以为首项,为公比的等比数列,由等比数列的通项公式得到结果;(2)由错位相减的方法得到结果;(3)根据第二问得到:,数列单调递增,由数列的单调性得到数列范围.【详解】(1)由,令,则,又,所以.当时,由可得,,即,所以是以为首项,为公比的等比数列,于是.(2)∴∴从而.(3)由(2)知,∴数列单调递增,∴,又,∴要恒成立,则,解得,又,故.【点睛】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等。19、(Ⅰ)2;(Ⅱ).【解析】试题分析:(Ⅰ)先由条件得到的坐标,根据与垂直可得,整理得,从而得到.(Ⅱ)由得到,故当时,取得最小值为.试题解析:(Ⅰ)由条件可得,因为与垂直,所以,即,所以,所以.(Ⅱ)由得,所以当时,取得最小值,所以的最小值为.20、【解析】
利用向量垂直和同角三角函数关系可求得;利用二倍角公式和同角三角函数平方关系将化为关于正余弦的齐次式的问题,分子分母同时除以可化为的形式,代入的值可求得结果.【详解】,即【点睛】本题考查正余弦齐次式的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国手推式移动电站数据监测研究报告
- 2024至2030年中国彩色涂层钢卷行业投资前景及策略咨询研究报告
- 2024至2030年中国庭木户行业投资前景及策略咨询研究报告
- 盆景学知识如何做好一盆盆景
- 2024至2030年中国卸瓶台数据监测研究报告
- 2024至2030年中国冶金控制系统行业投资前景及策略咨询研究报告
- 2024至2030年中国交流耐电压测试仪数据监测研究报告
- 2024年山东省(枣庄、菏泽、临沂、聊城)中考语文试题含解析
- 2024年中国颗粒白土市场调查研究报告
- 2024年中国胶印水性光油市场调查研究报告
- 2024年美国健身器材市场现状及上下游分析报告
- 非物质文化遗产介绍-剪纸文化
- 针灸防治老年病
- FSSC22000V6.0变化点和文件修改建议
- 2024年事业单位招聘考试(职业能力倾向测验)题库新版
- 中考语文《红星照耀中国》复习教学课件
- 新版手术室管理规范
- 《物流成本管理》(朱伟生 第六版)课件全套 第1-12章 绪论、物流成本计算 - 物流成本绩效考评
- 大学生数媒个人职业生涯规划
- 心理健康与职业生涯第11课《主动学习高效学习》第一框教案《做主动的学习者》
- 八年级上册历史《中国工农红军长征》教学课件
评论
0/150
提交评论