版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省邯郸市六校2024届数学高一下期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点在直线上,若存在满足该条件的使得不等式成立,则实数的取值范围是()A. B. C. D.2.如图所示,在正方形ABCD中,E为AB的中点,F为CE的中点,则A. B.C. D.3.已知,满足,则()A. B. C. D.4.某个算法程序框图如图所示,如果最后输出的的值是25,那么图中空白处应填的是()A. B. C. D.5.点、、、在同一个球的球面上,,.若四面体的体积的最大值为,则这个球的表面积为()A. B. C. D.6.若实数x,y满足条件,则目标函数z=2x-y的最小值()A. B.-1 C.0 D.27.已知,且,,这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则()A.7 B.6 C.5 D.98.某船从处向东偏北方向航行千米后到达处,然后朝西偏南的方向航行6千米到达处,则处与处之间的距离为()A.千米 B.千米 C.3千米 D.6千米9.已知等差数列的前n项和为,且,,则()A.11 B.16 C.20 D.2810.已知为等差数列,,则的值为()A.3 B.2 C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.在扇形中,如果圆心角所对弧长等于半径,那么这个圆心角的弧度数为______.12.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出80人作进一步调查,则在[1500,2000)(元)月收入段应抽出人.13.已知直线和,若,则a等于________.14.底面边长为,高为的直三棱柱形容器内放置一气球,使气球充气且尽可能的膨胀(保持球的形状),则气球表面积的最大值为_______.15.若,且,则的最小值为_______.16.数列满足,(且),则数列的通项公式为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,且,.(1)求函数和的解析式;(2)求函数的递增区间;(3)若函数的最小值为,求λ值.18.已知数列为等差数列,且满足,,数列的前项和为,且,.(Ⅰ)求数列,的通项公式;(Ⅱ)若对任意的,不等式恒成立,求实数的取值范围.19.已知数列满足=(1)若求数列的通项公式;(2)若==对一切恒成立求实数取值范围.20.如图所示,在三棱柱中,与都为正三角形,且平面,分别是的中点.求证:(1)平面平面;(2)平面平面.21.如图,墙上有一壁画,最高点离地面4米,最低点离地面2米,观察者从距离墙米,离地面高米的处观赏该壁画,设观赏视角(1)若问:观察者离墙多远时,视角最大?(2)若当变化时,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据题干得到,存在满足该条件的使得不等式成立,即,再根据均值不等式得到最小值为9,再由二次不等式的解法得到结果.【详解】点在直线上,故得到,存在满足该条件的使得不等式成立,即故原题转化为故答案为:B【点睛】本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.解决二元的范围或者最值问题,常用的方法有:不等式的应用,二元化一元的应用,线性规划的应用,等.2、D【解析】
由平面向量基本定理和向量运算求解即可【详解】根据题意得:,又,,所以.故选D.【点睛】本题主要考查了平面向量的基本定理的简单应用,属于基础题.3、A【解析】
根据对数的化简公式得到,由指数的运算公式得到=,由对数的性质得到>0,,进而得到结果.【详解】已知,=,>0,进而得到.故答案为A.【点睛】本题考查了指对函数的运算公式和对数函数的性质;比较大小常用的方法有:两式做差和0比较,分式注意同分,进行因式分解为两式相乘的形式;或者利用不等式求得最值,判断最值和0的关系.4、B【解析】
分别依次写出每次循环所得答案,再与输出结果比较,得到答案.【详解】由程序框图可知,第一次循环后,,,;第二次循环后,,,;第三次循环后,,,;第四次循环后,,,;第五次循环后,,,此时,则图中空白处应填的是【点睛】本题主要考查循环结构由输出结果计算判断条件,难度不大.5、D【解析】
根据几何体的特征,小圆的圆心为,若四面体的体积取最大值,由于底面积不变,高最大时体积最大,可得与面垂直时体积最大,从而求出球的半径,即可求出球的表面积.【详解】根据题意知,、、三点均在球心的表面上,且,,,则的外接圆半径为,的面积为,小圆的圆心为,若四面体的体积取最大值,由于底面积不变,高最大时体积最大,所以,当与面垂直时体积最大,最大值为,,设球的半径为,则在直角中,,即,解得,因此,球的表面积为.故选:D.【点睛】本题考查的知识点是球内接多面体,球的表面积,其中分析出何时四面体体积取最大值,是解答的关键.6、A【解析】
线性规划问题,首先画出可行域,再令z=0,画出目标函数,上下平移得到z的最值。【详解】可行域如图所示,当目标函数平移到A点时z取最小值,故选A【点睛】线性规划中线性的目标函数问题,首先画出可行域,再令z=0,画出目标函数,上下平移得到z的最值。7、C【解析】
由,可得成等比数列,即有=4;讨论成等差数列或成等差数列,运用中项的性质,解方程可得,即可得到所求和.【详解】由,可得成等比数列,即有=4,①若成等差数列,可得,②由①②可得,1;若成等差数列,可得,③由①③可得,1.综上可得1.故选:C.【点睛】本题考查等差数列和等比数列的中项的性质,考查运算能力,属于中档题.8、B【解析】
通过余弦定理可得答案.【详解】设处与处之间的距离为千米,由余弦定理可得,则.【点睛】本题主要考查余弦定理的实际应用,难度不大.9、C【解析】
可利用等差数列的性质,,仍然成等差数列来解决.【详解】为等差数列,前项和为,,,成等差数列,,又,,,.故选:.【点睛】本题考查等差数列的性质,关键在于掌握“等差数列中,,仍成等差数列”这一性质,属于基础题.10、D【解析】
根据等差数列下标和性质,即可求解.【详解】因为为等差数列,故解得.故选:D.【点睛】本题考查等差数列下标和性质,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
根据弧长公式求解【详解】因为圆心角所对弧长等于半径,所以【点睛】本题考查弧长公式,考查基本求解能力,属基础题12、16【解析】试题分析:由频率分布直方图知,收入在1511--2111元之间的概率为1.1114×511=1.2,所以在[1511,2111)(元)月收入段应抽出81×1.2=16人。考点:频率分布直方图的应用;分层抽样。13、【解析】
根据两直线互相垂直的性质可得,从而可求出的值.【详解】直线和垂直,.解得.故答案为:【点睛】本题考查了直线的一般式,根据两直线的位置关系求参数的值,熟记两直线垂直系数满足:是关键,属于基础题.14、【解析】由题意,气球充气且尽可能地膨胀时,气球的半径为底面三角形内切圆的半径
∵底面三角形的边长分别为,∴底面三角形的边长为直角三角形,利用等面积可求得∴气球表面积为4π.15、【解析】
将变换为,展开利用均值不等式得到答案.【详解】若,且,则时等号成立.故答案为【点睛】本题考查了均值不等式,“1”的代换是解题的关键.16、【解析】
利用累加法和裂项求和得到答案.【详解】当时满足故答案为【点睛】本题考查了数列的累加法,裂项求和法,意在考查学生对于数列公式和方法的灵活运用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)递增区间为,(3)【解析】
(1)根据向量的数量积坐标运算,以及模长的求解公式,即可求得两个函数的解析式;(2)由(1)可得,整理化简后,将其转化为余弦型三角函数,再求单调区间即可;(3)求得的解析式,用换元法,将函数转化为二次函数,讨论二次函数的最小值,从而求得参数的值.【详解】(1),.(2)令,得的递增区间为,.(3)∵,∴..当时,时,取最小值为-1,这与题设矛盾.当时,时,取最小值,因此,,解得.当时,时,取最小值,由,解得,与题设矛盾.综上所述,.【点睛】本题主要考查余弦型三角函数的单调区间的求解,含的二次型函数的最值问题,涉及向量数量积的运算,模长的求解,以及二次函数动轴定区间问题,属综合基础题.18、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)数列的通项公式,利用,可求公差,然后可求;的通项公式可以利用退位相减法求解;(Ⅱ)求出代入,利用分离参数法可求实数的取值范围.【详解】解:(Ⅰ)∵,∴,∴,即,∵,∴,∴,∴,又,也成立,∴是以1为首项,3为公比的等比数列,∴.(Ⅱ),∴对恒成立,即对恒成立,令,,当时,,当时,,∴,故,即的取值范围为.【点睛】本题主要考查数列通项公式的求解和参数范围的确定,熟练掌握公式是求解关键,侧重考查数学运算的核心素养.19、(1)=;(2).【解析】
(1)由,结合可得数列为等差数列,进而可得所求;(2)由得,利用累加法并结合等比数列的前项和公式求出,化简得,再利用数列的单调性求出的最大值即可得出结论.【详解】(1)由,可得=.∴数列是首项为1,公差为4的等差数列,∴.(2)由及,得=,∴,∴,又满足上式,∴.∵对一切恒成立,即对一切恒成立,∴对一切恒成立.又数列为单调递减数列,∴,∴,∴实数取值范围为.【点睛】本题主要考查等差数列与等比数列的通项公式与前项和公式,考查了累加法与恒成立问题、逻辑推理能力与计算能力,解决数列中的恒成立问题时,也常利用分离参数的方法,转化为求最值的问题求解.20、(1)见解析.(2)见解析.【解析】
(1)由分别是的中点,证得,由线面平行的判定定理,可得平面,平面,再根据面面平行的判定定理,即可证得平面平面.(2)利用线面垂直的判定定理,可得平面,再利用面面垂直的判定定理,即可得到平面平面.【详解】(1)在三棱柱中,因为分别是的中点,所以,根据线面平行的判定定理,可得平面,平面又,∴平面平面.(2)在三棱柱中,平面,所以,又,,所以平面,而平面,所以平面平面.【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.21、(1)(2)3≤x≤1.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 艺术与社会责任研究-洞察分析
- 系统安全性分析-洞察分析
- 心搏骤停急救设备研发-洞察分析
- 虚拟现实与旅游文化体验-洞察分析
- 南宁市三好学生主要事迹(8篇)
- 虚拟现实技术在游乐园的应用-洞察分析
- 体育用品零售市场现状分析-洞察分析
- 原子分子反应动力学-洞察分析
- 胸部疾病影像智能识别-洞察分析
- 以时间就是生命的理念看救护知识普及的重要性
- 信息安全意识培训课件
- Python试题库(附参考答案)
- MOOC 理解马克思-南京大学 中国大学慕课答案
- 涂色画简笔画已排可直接打印涂色
- 空调维修派工单(共1页)
- 运动场监理大纲
- 特种设备日常运行记录表(共4页)
- 部编本语文八年级上全册文言文课下注释
- 十二种健康教育印刷资料
- RTO处理工艺PFD计算
- 凯旋帝景地产杯篮球争霸赛方案
评论
0/150
提交评论