版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省如皋市高一数学第二学期期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.等差数列{}中,=2,=7,则=()A.10 B.20 C.16 D.122.若直线xa+yb=1(a>0,b>0)A.3 B.4 C.3+22 D.3.下列四组中的函数,表示同一个函数的是()A., B.,C., D.,4.若直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,则m的值为()A.7 B.0或7 C.0 D.45.中,角所对的边分别为,已知向量,,且共线,则的形状是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形6.已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy7.设,且,则下列各不等式中恒成立的是()A. B. C. D.8.已知1,a,b,c,5五个数成等比数列,则b的值为()A. B. C. D.39.中,角的对边分别为,且,则角()A. B. C. D.10.已知a、b、c分别是△ABC的内角A、B、C的对边,若,则的形状为()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等边三角形二、填空题:本大题共6小题,每小题5分,共30分。11.如图甲是第七届国际数学教育大会(简称)的会徽图案,会徽的主体图案是由如图乙的一连串直角三角形演化而成的,其中,如果把图乙中的直角三角形继续作下去,记的长度构成数列,则此数列的通项公式为_____.12.将函数f(x)=cos(2x)的图象向左平移个单位长度后,得到函数g(x)的图象,则下列结论中正确的是_____.(填所有正确结论的序号)①g(x)的最小正周期为4π;②g(x)在区间[0,]上单调递减;③g(x)图象的一条对称轴为x;④g(x)图象的一个对称中心为(,0).13.对于数列满足:,其前项和为记满足条件的所有数列中,的最大值为,最小值为,则___________14.中,若,,则角C的取值范围是________.15.在中,内角,,所对的边分别为,,,,且,则面积的最大值为______.16.已知函数的图象如下,则的值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利分别为和,可能的最大亏损率分别为和.投资人计划投资金额不超过亿元,要求确保可能的资金亏损不超过亿元,问投资人对甲、乙两个项目各投资多少亿元,才能使可能的盈利最大?18.已知菱形ABCD的边长为2,M为BD上靠近D的三等分点,且线段.(1)求的值;(2)点P为对角线BD上的任意一点,求的最小值.19.已知.(1)求的值;(2)求的值.20.如图,在三棱柱中,侧棱垂直于底面,,,分别是,的中点.(1)求证:平面平面;(2)求证:平面.21.如图,在正方形中,点是的中点,点是的中点,将分别沿折起,使两点重合于,连接.(1)求证:;(2)点是上一点,若平面,则为何值?并说明理由.(3)若,求二面角的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据等差数列的性质可知第五项减去第三项等于公差的2倍,由=+5得到2d等于5,然后再根据等差数列的性质得到第七项等于第五项加上公差的2倍,把的值和2d的值代入即可求出的值,即可知=,故选D.2、C【解析】
将1,2代入直线方程得到1a+2【详解】将1,2代入直线方程得到1a+b=(a+b)(当a=2故答案选C【点睛】本题考查了直线方程,均值不等式,1的代换是解题的关键.3、A【解析】
分别判断两个函数的定义域和对应法则是否相同即可.【详解】.的定义域为,,两个函数的定义域相同,对应法则相同,所以,表示同一个函数..的定义域为,,两个函数的定义域相同,对应法则不相同,所以,不能表示同一个函数..的定义域为,的定义域为,两个函数的定义域不相同,所以,不能表示同一个函数..的定义域为,的定义域,两个函数的定义域不相同,对应法则相同,所以,不能表示同一个函数.故选.【点睛】本题主要考查判断两个函数是否为同一函数,判断的依据主要是判断两个函数的定义域和对应法则是否相同即可.4、B【解析】
根据直线和直线平行则斜率相等,故m(m-1)=3m×2,求解即可。【详解】∵直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,∴m(m-1)=3m×2,∴m=0或7,经检验,都符合题意,故选B.【点睛】本题属于基础题,利用直线的平行关系,斜率相等求解参数。5、D【解析】
由向量共线的坐标表示得一等式,然后由正弦定理化边为角,利用诱导公式得展开后代入原式化简得,分类讨论得解.【详解】∵共线,∴,即,,,整理得,所以或,或或(舍去).∴三角形为直角三角形或等腰三角形.故选:D.【点睛】本题考查三角形形状的判断,考查向量共线的坐标表示,考查正弦定理,两角和的正弦公式,考查三角函数性质.解题时不能随便约分漏解.6、D【解析】因为as+t=as•at,lg(xy)=lgx+lgy(x,y为正实数),所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选D.7、D【解析】
根据不等式的性质,逐项检验,即可判断结果.【详解】对于选项A,若,显然不成立;对于选项B,若,显然不成立;对于选项C,若,显然不成立;对于选项D,因为,所以,故正确.故选:D.【点睛】本题考查了不等式的性质,属于基础题.8、A【解析】
根据等比数列奇数项也成等比数列,求解.【详解】因为1,a,b,c,5五个数成等比数列,所以也成等比数列,等比数列奇数项的符号一致,,.故选A.【点睛】本题考查了等比数列的基本性质,属于简单题型,但需注意这个隐含条件.9、B【解析】
根据题意结合正弦定理,由题,可得三角形为等边三角形,即可得解.【详解】由题:即,中,由正弦定理可得:,即,两边同时平方:,由题,所以,即,所以,即为等边三角形,所以.故选:B【点睛】此题考查利用正弦定理进行边角互化,根据边的关系判断三角形的形状,求出三角形的内角.10、A【解析】
将原式进行变形,再利用内角和定理转化,最后可得角B的范围,可得三角形形状.【详解】因为在三角形中,变形为由内角和定理可得化简可得:所以所以三角形为钝角三角形故选A【点睛】本题考查了解三角形,主要是公式的变形是解题的关键,属于较为基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由图可知,由勾股定理可得,利用等差数列的通项公式求解即可.【详解】根据图形,因为都是直角三角形,,是以1为首项,以1为公差的等差数列,,,故答案为.【点睛】本题主要考查归纳推理的应用,等差数列的定义与通项公式,以及数形结合思想的应用,意在考查综合应用所学知识解答问题的能力,属于与中档题.12、②④.【解析】
利用函数的图象的变换规律求得的解析式,再利用三角函数的周期性、单调性、图象的对称性,即可求解,得到答案.【详解】由题意,将函数的图象向左平移个单位长度后,得到的图象,则函数的最小正周期为,所以①错误的;当时,,故在区间单调递减,所以②正确;当时,,则不是函数的对称轴,所以③错误;当时,,则是函数的对称中心,所以④正确;所以结论正确的有②④.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的图象与性质的判定,其中解答熟记三角函数的图象变换,以及三角函数的图象与性质,准确判定是解答的关键,着重考查了推理与运算能力,属于中档试题.13、1【解析】
由,,,,,分别令,3,4,5,求得的前5项,观察得到最小值,,计算即可得到的值.【详解】由,,,,,可得,解得,又,,可得或,又,,,可得或5;或6;或或8;又,,,,可得或6或7;或7或8;或8或9或10或12;或10或12或1.综上可得的最大值,最小值为,则.故答案为:1.【点睛】本题考查数列的和的最值,注意运用元素与集合的关系,运用列举法,考查判断能力和运算能力,属于中档题.14、;【解析】
由,利用正弦定理边角互化以及两角和的正弦公式可得,进而可得结果.【详解】由正弦定理可得,又,则,即,则,C是三角形的内角,则,故答案为:.【点睛】本题注意考查正弦定理以及两角和的正弦公式的应用,属于中档题.正弦定理主要有三种应用:求边和角、边角互化、外接圆半径.15、【解析】
根据正弦定理将转化为,即,由余弦定理得,再用基本不等式法求得,根据面积公式求解.【详解】根据正弦定理可转化为,化简得由余弦定理得因为所以,当且仅当时取所以则面积的最大值为.故答案为:【点睛】本题主要考查正弦定理,余弦定理,基本不等式的综合应用,还考查了运算求解的能力,属于中档题.16、【解析】
由函数的图象的顶点坐标求出,由半个周期求出,最后将特殊点的坐标求代入解析式,即可求得的值.【详解】解:由图象可得,,得.,将点代入函数解析式,得,,,又因为,所以故答案为:【点睛】本题考查由的部分图象确定其解析式.(1)根据函数的最高点的坐标确定(2)根据函数零点的坐标确定函数的周期求(3)利用最值点的坐标同时求的取值,即可得到函数的解析式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、投资人用亿元投资甲项目,亿元投资乙项目,才能在确保亏损不超过亿元的前提下,使可能的盈利最大.【解析】
设投资人分别用亿元、亿元投资甲、乙两个项目,根据题意列出变量、所满足的约束条件和线性目标函数,利用平移直线的方法得出线性目标函数取得最大值时的最优解,并将最优解代入线性目标函数可得出盈利的最大值,从而解答该问题.【详解】设投资人分别用亿元、亿元投资甲、乙两个项目,由题意知,即,目标函数为.上述不等式组表示平面区域如图所示,阴影部分(含边界)即可行域.由图可知,当直线经过点时,该直线在轴上截距最大,此时取得最大值,解方程组,得,所以,点的坐标为.当,时,取得最大值,此时,(亿元).答:投资人用亿元投资甲项目,亿元投资乙项目,才能在确保亏损不超过亿元的前提下,使可能的盈利最大.【点睛】本题考查线性规划的实际应用,考查利用数学知识解决实际问题,解题的关键就是列出变量所满足的约束条件,并利用数形结合思想求解,考查分析问题和解决问题的能力,属于中等题.18、(1),(2)【解析】
(1)由结合,可求出,从而得到(2)建立直角坐标系,设,可得到,然后利用二次函数的知识求出最小值【详解】(1)如图,四边形ABCD为菱形,所以所以因为,所以可解得,所以所以是等边三角形,故(2)以A为原点,所在直线为x轴建立如图所示坐标系:则有,所以线段:设,则有,所以因为,所以当时取得最小值【点睛】本题考查平面向量数量积及其运算,涉及余弦定理,二次函数等基本知识,属于中档题.19、(1);(2)【解析】
试题分析:(1)利用正切的两角和公式求的值;(2)利用第一问的结果求第二问,但需要先将式子化简,最后变形成关于的式子,需要运用三角函数的倍角公式将化成单角的三角函数,然后分子分母都除以,然后代入的值即可.试题解析:(1)由(2)考点:1.正切的两角和公式;2.正余弦的倍角公式.20、(1)证明见解析(2)证明见解析【解析】
(1)根据线面垂直的判断定理得到平面;再由面面垂直的判定定理,即可得出结论成立;(2)取的中点,连接,,根据线面平行的判定定理,即可得出结论成立.【详解】(1)在三棱柱中,底面,所以.又因为,所以平面;又平面,所以平面平面;(2)取的中点,连接,.因为,,分别是,,的中点,所以,且,.因为,且,所以,且,所以四边形为平行四边形,所以,又因为平面,平面,所以平面.【点睛】本题主要考查证明面面垂直,以及证明线面平行,熟记线面垂直、面面垂直的判定定理,以及线面平行的判定定理即可,属于常考题型.21、(1)证明见详解;(2),理由见详解;(3).【解析】
(1)通过证明EF平面PBD,即可证明;(2)通过线面平行,将问题转化为线线平行,在平面图形中根据线段比例进而求解;(3)根据(1)(2)所得,找到二面角的平面角,然后再进行求解.【详解】(1)证明:因为四边形ABCD为正方形,故DAAE,DC,即折叠后的DP又因为平面PEF,平面PEF,故DP平面PEF,又平面PEF,故.在正方形ABCD中,容易知EF,又平面PBD,平面PBD,故EF平面PBD,又平面PBD故,即证.(2)连接BD交EF于O,连接OM,作图如下因为//平面,平面PBD,平面PBD平面=MO故//MO在中,由,以及E、F分别是正方形ABCD两边的中点,故可得即为所求.(3)过M作MH垂直于BD,垂足为H,连接OP,作图如下:由(1)可知:EF平面PBD,因为MH平面PBD,故EF又,平面EDF,BD平面EDF,故MH平面EDF,又
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年海南省建筑安全员B证考试题库
- 2025年安徽建筑安全员-C证考试题库
- 2025黑龙江省建筑安全员-A证考试题库及答案
- 《急腹症诊治原则》课件
- 酸碱盐复习课件浙教版
- 《手机视频转换》课件
- 单位管理制度展示大全【人员管理】十篇
- 车钩缓冲器拆装器行业深度研究报告
- 单位管理制度展示汇编【职工管理篇】十篇
- 单位管理制度收录大全【人力资源管理篇】
- 机动车查验员技能理论考试题库大全-上(单选题部分)
- 监理人员安全生产培训
- 2024-2030年中国电力检修行业运行状况及投资前景趋势分析报告
- 河北省百师联盟2023-2024学年高二上学期期末大联考历史试题(解析版)
- 中央空调系统运行与管理考核试卷
- 核电工程排水隧道专项施工方案
- 2021年四川省凉山州九年级中考适应性考试理科综合(试卷)
- 骨科疼痛的评估及护理
- 民办学校招生教师培训
- 【MOOC】概率论与数理统计-南京邮电大学 中国大学慕课MOOC答案
- 2024年度软件开发分包合同技术要求与交底2篇
评论
0/150
提交评论