2023-2024学年安徽省江南十校数学高一下期末考试试题含解析_第1页
2023-2024学年安徽省江南十校数学高一下期末考试试题含解析_第2页
2023-2024学年安徽省江南十校数学高一下期末考试试题含解析_第3页
2023-2024学年安徽省江南十校数学高一下期末考试试题含解析_第4页
2023-2024学年安徽省江南十校数学高一下期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年安徽省江南十校数学高一下期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,若,,,则角的大小为()A.30° B.45°或135° C.60° D.135°2.若数列满足(,为常数),则称数列为“调和数列”.已知数列为调和数列,且,则的最大值是()A.50 B.100 C.150 D.2003.已知的三个内角所对的边分别为.若,则该三角形的形状是()A.等边三角形 B.等腰三角形 C.等腰三角形或直角三角形 D.直角三角形4.ΔABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b=6,c=3,则A=A.45° B.60° C.75° D.90°5.对一切,恒成立,则实数的取值范围是()A. B.C. D.6.函数的定义域是(

)A. B. C. D.7.函数的值域为A.[1,] B.[1,2] C.[,2] D.[8.已知等边三角形ABC的边长为1,,那么().A.3 B.-3 C. D.9.已知直线倾斜角的范围是,则此直线的斜率的取值范围是()A. B.C. D.10.设是平面内的一组基底,则下面四组向量中,能作为基底的是()A.与 B.与C.与 D.与二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列中,,则_______12.在上,满足的的取值范围是______.13.已知正方体的棱长为,点、分别为、的中点,则点到平面的距离为______.14.已知圆截直线所得线段的长度是,则圆M与圆的位置关系是_________.15.若函数的图象与直线恰有两个不同交点,则的取值范围是________.16.空间两点,间的距离为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的最小正周期;(2)若,且,求的值.18.已知函数的最小正周期为.(1)求的值和函数的值域;(2)求函数的单调递增区间及其图像的对称轴方程.19.已知函数的部分图象如图所示.(1)求函数的解析式,并求出的单调递增区间;(2)若,求的值20.在中,角所对的边为,且满足(1)求角的值;(2)若且,求的取值范围.21.2019年4月20日,福建省人民政府公布了“3+1+2”新高考方案,方案中“2”指的是在思想政治、地理、化学、生物4门中选择2门.“2”中记入高考总分的单科成绩是由原始分转化得到的等级分,学科高考原始分在全省的排名越靠前,等级分越高小明同学是2018级的高一学生.已确定了必选地理且不选政治,为确定另选一科,小明收集并整理了化学与生物近10大联考的成绩百分比排名数据x(如x=19的含义是指在该次考试中,成绩高于小明的考生占参加该次考试的考生数的19%)绘制茎叶图如下.(1)分别计算化学、生物两个学科10次联考的百分比排名的平均数;中位数;(2)根据已学的统计知识,并结合上面的数据,帮助小明作出选择.并说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用正弦定理得到答案.【详解】在中正弦定理:或故答案选B【点睛】本题考查了正弦定理,属于简单题.2、B【解析】

根据调和数列定义知为等差数列,再由前20项的和为200知,最后根据基本不等式可求出的最大值。【详解】因为数列为调和数列,所以,即为等差数列又,又大于0所以【点睛】本题考查了新定义“调和数列”的性质、等差数列的性质及其前n项公式、基本不等式的性质,属于难题。3、B【解析】

利用三角形的内角关系及三角变换公式得到,从而得到,此三角形的形状可判断.【详解】因为,故,整理得到,所以,因,所以即,故为等腰三角形,故选B.【点睛】本题考查两角和、差的正弦,属于基础题,注意角的范围的讨论.4、C【解析】

利用正弦定理求出sinB的值,由b<c得出B<C,可得出角B的值,再利用三角形的内角和定理求出角A【详解】由正弦定理得bsinB=∵b<c,则B<C,所以,B=45∘,由三角形的内角和定理得故选:C.【点睛】本题考查利用正弦定理解三角形,也考查了三角形内角和定理的应用,在解题时要注意正弦值所对的角有可能有两角,可以利用大边对大角定理或两角之和小于180∘5、B【解析】

先求得的取值范围,根据恒成立问题的求解策略,将原不等式转化为,再解一元二次不等式求得的取值范围.【详解】解:对一切,恒成立,转化为:的最大值,又知,的最大值为;所以,解得或.故选B.【点睛】本小题主要考查恒成立问题的求解策略,考查三角函数求最值的方法,考查一元二次不等式的解法,考查化归与转化的数学思想方法,属于中档题.6、B【解析】

根据函数f(x)的解析式,列出使解析式有意义的不等式组,求出解集即可.【详解】∵函数f(x)=+lg(3x+1),∴;解得﹣<x<1,∴函数f(x)的定义域是(﹣,1).故选B.【点睛】本题考查了求函数定义域的应用问题,解题的关键是列出使函数解析式有意义的不等式组,是基础题目.7、D【解析】

因为函数,平方求出的取值范围,再根据函数的性质求出的值域.【详解】函数定义域为:,因为,又,所以的值域为.故选D.【点睛】本题考查函数的值域,此题也可用三角换元求解.求函数值域常用方法:单调性法,换元法,判别式法,反函数法,几何法,平方法等.8、D【解析】

利用向量的数量积即可求解.【详解】解析:.故选:D【点睛】本题考查了向量的数量积,注意向量夹角的定义,属于基础题.9、B【解析】

根据直线的斜率等于倾斜角的正切值求解即可.【详解】因为直线倾斜角的范围是,又直线的斜率,.故或.故.故选:B【点睛】本题主要考查了直线斜率与倾斜角的关系,属于基础题.10、C【解析】

利用向量可以作为基底的条件是,两个向量不共线,由此分别判定选项中的两个向量是否共线即可.【详解】由是平面内的一组基底,所以和不共线,对应选项A:,所以这2个向量共线,不能作为基底;对应选项B:,所以这2个向量共线,不能作为基底;对应选项D:,所以这2个向量共线,不能作为基底;对应选项C:与不共线,能作为基底.故选:C.【点睛】本题主要考查基底的定义,判断2个向量是否共线的方法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

设等差数列的公差为,用与表示等式,再用与表示代数式可得出答案。【详解】设等差数列的公差为,则,因此,,故答案为:。【点睛】本题考查等差数列中项的计算,解决等差数列有两种方法:基本性质法(与下标相关的性质)以及基本量法(用首项和公差来表示相应的量),一般利用基本量法来进行计算,此外,灵活利用与下标有关的基本性质进行求解,能简化计算,属于中等题。12、【解析】

由,结合三角函数线,即可求解,得到答案.【详解】如图所示,因为,所以满足的的取值范围为.【点睛】本题主要考查了特殊角的三角函数值,以及三角函数线的应用,着重考查了推理与运算能力,属于基础题.13、【解析】

作出图形,取的中点,连接,证明平面,可知点平面的距离等于点到平面的距离,然后利用等体积法计算出点到平面的距离,即为所求.【详解】如下图所示,取的中点,连接,在正方体中,且,、分别为、的中点,且,所以,四边形为平行四边形,且,又,,平面,平面,平面,则点平面的距离等于点到平面的距离,的面积为,在正方体中,平面,且平面,,易知三棱锥的体积为.的面积为.设点到平面的距离为,则,.故答案为:.【点睛】本题考查点到平面的距离的求法,是中档题,解题时要认真审题,注意等体积法的合理运用.14、相交【解析】

根据直线与圆相交的弦长公式,求出的值,结合两圆的位置关系进行判断即可.【详解】解:圆的标准方程为,则圆心为,半径,圆心到直线的距离,圆截直线所得线段的长度是,即,,则圆心为,半径,圆的圆心为,半径,则,,,,即两个圆相交.故答案为:相交.【点睛】本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出的值是解决本题的关键.15、【解析】

作出函数的图像,根据图像可得答案.【详解】因为,所以,所以,所以,作出函数的图像,由图可知故答案为:【点睛】本题考查了正弦型函数的图像,考查了数形结合思想,属于基础题.16、【解析】

根据空间中两点间的距离公式即可得到答案【详解】由空间中两点间的距离公式可得;;故距离为3【点睛】本题考查空间中两点间的距离公式,属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期是(2)【解析】

(1)运用辅助角公式化简得;(2)先计算的值为,构造,求出的值.【详解】(1)因为,所以,所以函数的最小正周期是.(2)因为,所以,因为,所以,所以,则【点睛】利用角的配凑法,即进行角的整体代入求值,考查整体思想的运用.18、(1),值域为;(2)单调递增区间为,对称轴方程为.【解析】

(1)利用二倍角公式降幂,然后化为的形式,由周期公式求出,同时求得值域;(2)直接利用复合函数的单调性求得增区间,再由求得对称轴方程.【详解】(1),由,得,,则函数的值域为;(2)由,解得,函数的单调递增区间为,令,解得,函数的对称轴方程为.【点睛】本题考查了二倍角公式以及三角函数的图像与性质,掌握正弦函数的性质才是解题的关键,考查了基本知识,属于基础题.19、(1);递增区间为;(2)【解析】

(1)由图可知其函数的周期满足,从而求得,进而求得,再代入点的坐标可得值,从而求得解析式;解不等式,可得函数的单调增区间;(2)由题意可得,结合,得到,利用平方关系,求得,之后利用差角余弦公式求得结果.【详解】(1)设函数的周期为,由图可知,∴,即,∵,∴,∴,上式中代入,有,得,,即,,又∵,∴,∴,令,解得,即的递增区间为;(2),又,∴,∴;∴.【点睛】该题考查的是有关三角函数的问题,涉及到的知识点有根据图象确定函数解析式,求正弦型函数的单调区间,同角三角函数关系式,利用整体角思维,结合差角正弦公式求三角函数值,属于简单题目.20、(1)或;(2).【解析】试题分析:(1)利用升幂公式及两角和与差的余弦公式化简已知等式,可得,从而得,注意两解;(2)由,得,利用正弦定理得,从而可变为,利用三角形的内角和把此式化为一个角的函数,再由两角和与差的正弦公式化为一个三角函数形式,由的范围()结合正弦函数性质可得取值范围.试题解析:(1)由已知,得,化简得,故或;(2)∵,∴,由正弦定理,得,故,∵,所以,,∴.21、(1)化学平均数30.2;中位数26;生物平均数29.6;中位数31;(2)见解析【解析】

(1)直接利用平均数的公式和中位数的定义计算化学、生物两个学科10次联考的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论