版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
成都龙泉中学2023-2024学年高一下数学期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的是最小的两份之和,则最小的一份的量是()A. B. C. D.2.已知点G为的重心,若,,则=()A. B. C. D.3.如图,A,B是半径为1的圆周上的定点,P为圆周上的动点,∠APB是锐角,大小为.图中△PAB的面积的最大值为()A.+sin2 B.sin+sin2C.+sin D.+cos4.在区间[–1,1]上任取两个数x和y,则x2+y2≥1的概率为()A. B.C. D.5.直线的倾斜角的大小为()A. B. C. D.6.湖南卫视《爸爸去哪儿》节目组为热心观众给予奖励,要从2014名小观众中抽取50名幸运小观众.先用简单随机抽样从2014人中剔除14人,剩下的2000人再按系统抽样方法抽取50人,则在2014人中,每个人被抽取的可能性()A.均不相等 B.不全相等C.都相等,且为 D.都相等,且为7.向量,则()A. B.C.与的夹角为60° D.与的夹角为30°8.设,则下列不等式恒成立的是A. B.C. D.9.已知函数(其中),对任意实数a,在区间上要使函数值出现的次数不少于4次且不多于8次,则k值为()A.2或3 B.4或3 C.5或6 D.8或710.已知向量,则与的夹角为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,内角,,所对的边分别为,,,,且,则面积的最大值为______.12.方程,的解集是__________.13.在公差为的等差数列中,有性质:,根据上述性质,相应地在公比为等比数列中,有性质:____________.14.102,238的最大公约数是________.15.已知直线与圆相交于,两点,则=______.16.已知中,的对边分别为,若,则的周长的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的最小正周期;(2)若,求当时自变量的取值集合.18.已知圆的圆心在线段上,圆经过点,且与轴相切.(1)求圆的方程;(2)若直线与圆交于,两点,当最小时,求直线的方程及的最小值.19.如图,在处有一港口,两艘海轮同时从港口处出发向正北方向匀速航行,海轮的航行速度为20海里/小时,海轮的航行速度大于海轮.在港口北偏东60°方向上的处有一观测站,1小时后在处测得与海轮的距离为30海里,且处对两艘海轮,的视角为30°.(1)求观测站到港口的距离;(2)求海轮的航行速度.20.五一放假期间高速公路免费是让实惠给老百姓,但也容易造成交通堵塞.在某高速公路上的某时间段内车流量(单位:千辆/小时)与汽车的平均速度(单位:千米/小时)之间满足的函数关系(为常数),当汽车的平均速度为千米/小时时,车流量为千辆/小时.(1)在该时间段内,当汽车的平均速度为多少时车流量达到最大值?(2)为保证在该时间段内车流量至少为千辆/小时,则汽车的平均速度应控制在什么范围内?21.已知函数,,数列满足,,.(1)求证;(2)求数列的通项公式;(3)若,求中的最大项.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由题意可得中间部分的为20个面包,设最小的一份为,公差为,可得到和的方程,即可求解.【详解】由题意可得中间的那份为20个面包,设最小的一份为,公差为,由题意可得,解得,故选D.【点睛】本题主要考查了等差数列的通项公式及其应用,其中根据题意设最小的一份为,公差为,列出关于和的方程是解答的关键,着重考查了推理与运算能力,属于基础题.2、B【解析】
由重心分中线为,可得,又(其中是中点),再由向量的加减法运算可得.【详解】设是中点,则,又为的重心,∴.故选B.【点睛】本题考查向量的线性运算,解题关键是掌握三角形重心的性质,即重心分中线为两段.3、B【解析】
由正弦定理可得,,则,,当点在的中垂线上时,取得最大值,此时的面积最大,求解即可.【详解】在中,由正弦定理可得,,则.,当点在的中垂线上时,取得最大值,此时的面积最大.取的中点,过点作的垂线,交圆于点,取圆心为,则(为锐角),.所以的面积最大为.故选B.【点睛】本题考查了三角形的面积的计算、正弦定理的应用,考查了三角函数的化简,考查了计算能力,属于基础题.4、A【解析】由题意知,所有的基本事件构成的平面区域为,其面积为.设“在区间[-1,1]上任选两个数,则”为事件A,则事件A包含的基本事件构成的平面区域为,其面积为.由几何概型概率公式可得所求概率为.选A.5、B【解析】
由直线方程,可知直线的斜率,设直线的倾斜角为,则,又,所以,故选.6、C【解析】由题意可得,先用简单随机抽样的方法从2014人中剔除14人,则剩下的再分组,按系统抽样抽取.在剔除过程中,每个个体被剔除的机会相等,所以每个个体被抽到的机会相等,均为故选C7、B【解析】试题分析:由,可得,所以,故选B.考点:向量的运算.8、C【解析】
利用不等式的性质,合理推理,即可求解,得到答案.【详解】因为,所以,所以A项不正确;因为,所以,,则,所以B不正确;因为,则,所以,又因为,则,所以等号不成立,所以C正确;由,所以,所以D错误.【点睛】本题主要考查了不等式的性质的应用,其中解答中熟记不等式的性质,合理运算是解答的关键,着重考查了推理与运算能力,属于基础题.9、A【解析】
根据题意先表示出函数的周期,然后根据函数值出现的次数不少于4次且不多于8次,得到周期的范围,从而得到关于的不等式,从而得到的范围,结合,得到答案.【详解】函数,所以可得,因为在区间上,函数值出现的次数不少于4次且不多于8次,所以得即与的图像在区间上的交点个数大于等于4,小于等于8,而与的图像在一个周期内有2个,所以,即解得,又因,所以得或者,故选:A.【点睛】本题考查正弦型函数的图像与性质,根据周期性求参数的值,函数与方程,属于中档题.10、D【解析】
先求出的模长,然后由可求出答案.【详解】由题意,,,所以与的夹角为.故选D.【点睛】本题考查了两个向量的夹角的求法,考查了向量的模长的计算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据正弦定理将转化为,即,由余弦定理得,再用基本不等式法求得,根据面积公式求解.【详解】根据正弦定理可转化为,化简得由余弦定理得因为所以,当且仅当时取所以则面积的最大值为.故答案为:【点睛】本题主要考查正弦定理,余弦定理,基本不等式的综合应用,还考查了运算求解的能力,属于中档题.12、【解析】
用正弦的二倍角公式展开,得到,分两种情况讨论得出结果.【详解】解:即,即:或.①由,,得.②由,,得或.综上可得方程,的解集是:故答案为【点睛】本题考查正弦函数的二倍角公式,以及特殊角的正余弦值.13、【解析】
根据题中条件,类比等差数列的性质,可直接得出结果.【详解】因为在公差为的等差数列中,有性质:,类比等差数列的性质,可得:在公比为等比数列中,故答案为:【点睛】本题主要考查类比推理,只需根据题中条件,结合等差数列与等比数列的特征,即可得出结果,属于常考题型.14、34【解析】试题分析:根据辗转相除法的含义,可得238=2×102+34,102=3×34,所以得两个数102、238的最大公约数是34.故答案为34.考点:辗转相除法.15、.【解析】
将圆的方程化为标准方程,由点到直线距离公式求得弦心距,再结合垂径定理即可求得.【详解】圆,变形可得所以圆心坐标为,半径直线,变形可得由点到直线距离公式可得弦心距为由垂径定理可知故答案为:【点睛】本题考查了直线与圆相交时的弦长求法,点到直线距离公式的应用及垂径定理的用法,属于基础题.16、【解析】中,由余弦定理可得,∵,∴,化简可得.∵,∴,解得(当且仅当时,取等号).故.再由任意两边之和大于第三边可得,故有,故的周长的取值范围是,故答案为.点睛:由余弦定理求得,代入已知等式可得,利用基本不等式求得,故.再由三角形任意两边之和大于第三边求得,由此求得△ABC的周长的取值范围.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】
(1)由辅助角公式可得,再求周期即可;(2)由求出,再解方程即可.【详解】解:(1),则的最小正周期为.(2)因为,所以,即,解得.因为,所以.因为,所以,即,则或,解得或.故当时,自变量的取值集合为或.【点睛】本题考查了三角恒等变换,重点考查了解三角方程,属中档题.18、(1)(2)的方程为,最小为【解析】
(1)设圆的方程为,由题意可得,求解即可得到圆的方程;(2)过定点,当直线与直线垂直时,直线被圆截得的弦最小,求解即可.【详解】解:(1)设圆的方程为,所以,解得所以圆的方程为.(2)直线的方程可化为点斜式,所以过定点.又点在圆内,当直线与直线垂直时,直线被圆截得的弦最小.因为,所以的斜率,所以的方程为,即,因为,,所以.【点睛】求圆的弦长的常用方法几何法:设圆的半径为r,弦心距为d,弦长为l,则;②代数方法:运用韦达定理及弦长公式:==.19、(1)海里;(2)速度为海里/小时【解析】
(1)由已知可知,所以在中,运用余弦定理易得OA的长.(2)因为C航行1小时到达C,所以知道OC的长即可,即求BC的长.在中,由正弦定理求得,在中,再由正弦定理即可求出BC.【详解】(1)因为海伦的速度为20海里/小时,所以1小时后,海里又海里,,所以中,由余弦定理知:即即,解得:海里(2)中,由正弦定理知:解得:中,,,所以所以在中,由正弦定理知:,解得:所以答:船的速度为海里/小时【点睛】三角形中一般已知三个条件可求其他条件,用到的工具一般是余弦定理或者正弦定理.20、(1)当汽车的平均速度时车流量达到最大值。(2)【解析】
(1)首先根据题意求出,再利用基本不等式即可求出答案.(2)根据题意列出不等式,解不等式即可.【详解】(1)有题知:,解得.所以,因为,当且仅当时,取“”.所以当汽车的平均速度时车流量达到最大值.(2)有题知:,整理得:,解得:.所以当时,在该时间段内车流量至少为千辆/小时.【点睛】本题第一问考查利用基本不等式求最值,第二问考查了二次不等式的解法,属于中档题.21、(1)见解析;(2);(3)【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村建房工程合同样本
- 离婚协议书中教育投资规划
- 增强现实行业关联交易管理办法
- 2024年度互联网医疗服务平台建设与运营合同
- 城市大型学校周边道路改造合同
- 城市绿化景观养护施工合同
- 商用面包车出租合同范本
- 科技别墅租赁合同
- 体检机构医师聘用合同模板
- 知识产权金融服务指南
- 企业如何利用新媒体做好宣传工作课件
- 如何培养孩子的自信心课件
- 中医药膳学全套课件
- 颈脊髓损伤-汇总课件
- 齿轮故障诊断完美课课件
- 2023年中国盐业集团有限公司校园招聘笔试题库及答案解析
- 大班社会《特殊的车辆》课件
- 野生动物保护知识讲座课件
- 早教托育园招商加盟商业计划书
- 光色变奏-色彩基础知识与应用课件-高中美术人美版(2019)选修绘画
- 前列腺癌的放化疗护理
评论
0/150
提交评论