版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古杭锦旗城镇初级中学中考数学押题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,矩形ABCD中,AB=3,AD=4,连接BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当线段BE′和线段BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为()A. B. C. D.2.如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为()A.5 B.6 C.7 D.93.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或14.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是()A. B. C. D.5.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10° B.20° C.50° D.70°6.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2=()A.70° B.110° C.130° D.140°7.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为()A.﹣2 B.﹣1 C.1 D.28.将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为()A.10cm B.30cm C.45cm D.300cm9.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是()12345成绩(m)8.28.08.27.57.8A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.010.如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为()A.7 B.8 C.9 D.1011.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为()A.34 B.23 C.912.下列运算正确的是()A.a2•a3=a6B.a3+a2=a5C.(a2)4=a8D.a3﹣a2=a二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中结论正确的是________(只需填写序号).14.将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC=cm.15.如图,正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF=,连接CE,CF,则△CEF周长的最小值为_____.16.已知实数m,n满足,,且,则=.17.关于x的方程x2-3x+2=0的两根为x1,x2,则x1+x2+x1x2的值为______.18.分解因式:m3–m=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.20.(6分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C.求抛物线y=ax2+2x+c的解析式:;点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;①在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.21.(6分)如图,已知点A(1,a)是反比例函数y1=的图象上一点,直线y2=﹣与反比例函数y1=的图象的交点为点B、D,且B(3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;(Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.22.(8分)已知关于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一个根,求m的值和方程①的另一根;对于任意实数m,判断方程①的根的情况,并说明理由.23.(8分)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距离分别为40cm、8cm.为使板凳两腿底端A、D之间的距离为50cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计).24.(10分)计算下列各题:(1)tan45°−sin60°•cos30°;(2)sin230°+sin45°•tan30°.25.(10分)先化简,再求值:,其中a是方程a(a+1)=0的解.26.(12分)春节期间,小丽一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.租车公司:按日收取固定租金80元,另外再按租车时间计费.共享汽车:无固定租金,直接以租车时间(时)计费.如图是两种租车方式所需费用y1(元)、y2(元)与租车时间x(时)之间的函数图象,根据以上信息,回答下列问题:(1)分别求出y1、y2与x的函数表达式;(2)请你帮助小丽一家选择合算的租车方案.27.(12分)“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:请结合图中信息解答下列问题:求出随机抽取调查的学生人数;补全分组后学生学习兴趣的条形统计图;分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】
先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=,则AF=4-=.再过G作GH∥BF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,由GH∥FB,得出=,即可求解.【详解】解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,∴BD=5,在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,∴BF2=32+(4-BF)2,解得BF=,∴AF=4-=.过G作GH∥BF,交BD于H,∴∠FBD=∠GHD,∠BGH=∠FBG,∵FB=FD,∴∠FBD=∠FDB,∴∠FDB=∠GHD,∴GH=GD,∵∠FBG=∠EBC=∠DBC=∠ADB=∠FBD,又∵∠FBG=∠BGH,∠FBG=∠GBH,∴BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,∵GH∥FB,∴=,即=,解得x=.故选A.【点睛】本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键.2、B【解析】
直接利用平均数的求法进而得出x的值,再利用中位数的定义求出答案.【详解】∵一组数据1,7,x,9,5的平均数是2x,∴,解得:,则从大到小排列为:3,5,1,7,9,故这组数据的中位数为:1.故选B.【点睛】此题主要考查了中位数以及平均数,正确得出x的值是解题关键.3、D【解析】
当k+1=0时,函数为一次函数必与x轴有一个交点;当k+1≠0时,函数为二次函数,根据条件可知其判别式为0,可求得k的值.【详解】当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;当k-1≠0,即k≠1时,由函数与x轴只有一个交点可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,综上可知k的值为1或2,故选D.【点睛】本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况.4、B【解析】
主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】综合主视图和俯视图,底层最少有个小立方体,第二层最少有个小立方体,因此搭成这个几何体的小正方体的个数最少是个.故选:B.【点睛】此题考查由三视图判断几何体,解题关键在于识别图形5、B【解析】
要使木条a与b平行,那么∠1=∠2,从而可求出木条a至少旋转的度数.【详解】解:∵要使木条a与b平行,∴∠1=∠2,∴当∠1需变为50º,∴木条a至少旋转:70º-50º=20º.故选B.【点睛】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.6、D【解析】∵四边形ADA'E的内角和为(4-2)•180°=360°,而由折叠可知∠AED=∠A'ED,∠ADE=∠A'DE,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'=360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE)=140°.7、C【解析】
先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.【详解】a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.故选C.【点睛】本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.8、A【解析】
根据已知得出直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案。【详解】直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形假设每个圆锥容器的地面半径为解得故答案选A.【点睛】本题考查扇形弧长的计算方法和扇形围成的圆锥底面圆的半径的计算方法。9、D【解析】
解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1.其中8.1出现1次,出现次数最多,8.2排在第三,∴这组数据的众数与中位数分别是:8.1,8.2.故选D.【点睛】本题考查众数;中位数.10、C【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】根据三视图知,该几何体中小正方体的分布情况如下图所示:所以组成这个几何体的小正方体个数最多为9个,故选C.【点睛】考查了三视图判定几何体,关键是对三视图灵活运用,体现了对空间想象能力的考查.11、D【解析】试题分析:列举出所有情况,看取出的两个都是黄色球的情况数占总情况数的多少即可.试题解析:画树状图如下:共有12种情况,取出2个都是黄色的情况数有6种,所以概率为12故选D.考点:列表法与树状法.12、C【解析】
根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘进行计算即可.【详解】A、a2•a3=a5,故原题计算错误;B、a3和a2不是同类项,不能合并,故原题计算错误;C、(a2)4=a8,故原题计算正确;D、a3和a2不是同类项,不能合并,故原题计算错误;故选:C.【点睛】此题主要考查了幂的乘方、同底数幂的乘法,以及合并同类项,关键是掌握计算法则.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、②③【解析】试题分析:∠BAD与∠ABC不一定相等,选项①错误;∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CF⊥AB,∴∠AEP=90°,∴∠ADB=∠AEP,又∠PAE=∠BAD,∴△APE∽△ABD,∴∠ABD=∠APE,又∠APE=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;由AB是直径,则∠ACQ=90°,如果能说明P是斜边AQ的中点,那么P也就是这个直角三角形外接圆的圆心了.Rt△BQD中,∠BQD=90°-∠6,Rt△BCE中,∠8=90°-∠5,而∠7=∠BQD,∠6=∠5,所以∠8=∠7,所以CP=QP;由②知:∠3=∠5=∠4,则AP=CP;所以AP=CP=QP,则点P是△ACQ的外心,选项③正确.则正确的选项序号有②③.故答案为②③.考点:1.切线的性质;2.圆周角定理;3.三角形的外接圆与外心;4.相似三角形的判定与性质.14、1.【解析】试题分析:如图,∵矩形的对边平行,∴∠1=∠ACB,∵∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=1cm,∴AC=1cm.考点:1轴对称;2矩形的性质;3等腰三角形.15、2+4【解析】
如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.【详解】如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.∵CH=EF,CH∥EF,∴四边形EFHC是平行四边形,∴EC=FH,∵FA=FC,∴EC+CF=FH+AF=AH,∵四边形ABCD是正方形,∴AC⊥BD,∵CH∥DB,∴AC⊥CH,∴∠ACH=90°,在Rt△ACH中,AH==4,∴△EFC的周长的最小值=2+4,故答案为:2+4.【点睛】本题考查轴对称﹣最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.16、.【解析】试题分析:由时,得到m,n是方程的两个不等的根,根据根与系数的关系进行求解.试题解析:∵时,则m,n是方程3x2﹣6x﹣5=0的两个不相等的根,∴,.∴原式===,故答案为.考点:根与系数的关系.17、5【解析】试题分析:利用根与系数的关系进行求解即可.解:∵x1,x2是方程x2-3x+2=0的两根,∴x1+x2=,x1x2=,∴x1+x2+x1x2=3+2=5.故答案为:5.18、m(m+1)(m-1)【解析】
根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解),可以先提公因式,再利用平方差完成因式分解【详解】解:故答案为:m(m+1)(m-1).【点睛】本题考查因式分解,掌握因式分解的技巧是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、解:(1)如图,△A1B1C1即为所求,C1(2,-2).(2)如图,△A2BC2即为所求,C2(1,0),△A2BC2的面积:10【解析】
分析:(1)根据网格结构,找出点A、B、C向下平移4个单位的对应点、、的位置,然后顺次连接即可,再根据平面直角坐标系写出点的坐标;(2)延长BA到使A=AB,延长BC到,使C=BC,然后连接A2C2即可,再根据平面直角坐标系写出点的坐标,利用△B所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.本题解析:(1)如图,△A1B1C1即为所求,C1(2,-2)(2)如图,△B为所求,(1,0),△B的面积:6×4−×2×6−×2×4−×2×4=24−6−4−4=24−14=10,20、(1)y=﹣x2+2x+3;(2)DE+DF有最大值为;(3)①存在,P的坐标为(,)或(,);②<t<.【解析】
(1)设抛物线解析式为y=a(x+1)(x﹣3),根据系数的关系,即可解答(2)先求出当x=0时,C的坐标,设直线AC的解析式为y=px+q,把A,C的坐标代入即可求出AC的解析式,过D作DG垂直抛物线对称轴于点G,设D(x,﹣x2+2x+3),得出DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,即可解答(3)①过点C作AC的垂线交抛物线于另一点P1,求出直线PC的解析式,再结合抛物线的解析式可求出P1,过点A作AC的垂线交抛物线于另一点P2,再利用A的坐标求出P2,即可解答②观察函数图象与△ACQ为锐角三角形时的情况,即可解答【详解】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;(2)当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3,如答图1,过D作DG垂直抛物线对称轴于点G,设D(x,﹣x2+2x+3),∵DF∥AC,∴∠DFG=∠ACO,易知抛物线对称轴为x=1,∴DG=x-1,DF=(x-1),∴DE+DF=﹣x2+2x+3+(x-1)=﹣x2+(2+)x+3-,∴当x=,DE+DF有最大值为;答图1答图2(3)①存在;如答图2,过点C作AC的垂线交抛物线于另一点P1,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=x+m,把C(0,3)代入得m=3,∴直线P1C的解析式为y=x+3,解方程组,解得或,则此时P1点坐标为(,);过点A作AC的垂线交抛物线于另一点P2,直线AP2的解析式可设为y=x+n,把A(﹣1,0)代入得n=,∴直线PC的解析式为y=,解方程组,解得或,则此时P2点坐标为(,),综上所述,符合条件的点P的坐标为(,)或(,);②<t<.【点睛】此题考查二次函数综合题,解题关键在于把已知点代入解析式求值和作辅助线.21、(1)反比例函数的解析式为y=﹣;(2)D(﹣2,);﹣2<x<0或x>3;(3)P(4,0).【解析】试题分析:(1)把点B(3,﹣1)带入反比例函数中,即可求得k的值;(2)联立直线和反比例函数的解析式构成方程组,化简为一个一元二次方程,解方程即可得到点D坐标,观察图象可得相应x的取值范围;(3)把A(1,a)是反比例函数的解析式,求得a的值,可得点A坐标,用待定系数法求得直线AB的解析式,令y=0,解得x的值,即可求得点P的坐标.试题解析:(1)∵B(3,﹣1)在反比例函数的图象上,∴-1=,∴m=-3,∴反比例函数的解析式为;(2),∴=,x2-x-6=0,(x-3)(x+2)=0,x1=3,x2=-2,当x=-2时,y=,∴D(-2,);y1>y2时x的取值范围是-2<x<0或x>;(3)∵A(1,a)是反比例函数的图象上一点,∴a=-3,∴A(1,-3),设直线AB为y=kx+b,,∴,∴直线AB为y=x-4,令y=0,则x=4,∴P(4,0)22、(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.【解析】试题分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一个根;(2)利用一元二次方程根的情况可以转化为判别式△与1的关系进行判断.(1)把x=-1代入得1+m-2=1,解得m=1∴2--2=1.∴∴另一根是2;(2)∵,∴方程①有两个不相等的实数根.考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根23、44cm【解析】解:如图,设BM与AD相交于点H,CN与AD相交于点G,由题意得,MH=8cm,BH=40cm,则BM=32cm,∵四边形ABCD是等腰梯形,AD=50cm,BC=20cm,∴.∵EF∥CD,∴△BEM∽△BAH.∴,即,解得:EM=1.∴EF=EM+NF+BC=2EM+BC=44(cm).答:横梁EF应为44cm.根据等腰梯形的性质,可得AH=DG,E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年林业碳汇造林项目咨询承包合同3篇
- 2024年外研版七年级科学下册月考试卷278
- 电力安全课程设计
- 2022-2023学年浙江台州路桥区五年级上册语文期末试卷及答案
- 物理专业 数学课程设计
- 一年级数学(上)计算题专项练习集锦
- 贵州省遵义市2024-2025学年高一上学期12月月考地理试题(含答案解析)
- 2024年版生物医药研发与生产合同协议书
- 声学器件的语音合成与交互体验考核试卷
- Chapter4Peopleatwork(教案)-2024-2025学年新思维小学英语2A
- 北疆文化全媒体传播体系的构建与实践
- 低血糖晕厥应急演练预案
- 四川省成都市某中学2024-2025学年高一年级上册11月期中考试 英语试卷(含答案)
- 2025届福建省厦门市重点中学高三第二次联考语文试卷含解析
- OpenCV计算机视觉基础教程(Python版)教学教案
- 2024年度二人合伙光伏发电项目投资合同3篇
- 2024-2030年中国室内滑雪场市场需求预测及发展规划研究报告
- 期末综合素养评价一(试题)-2024-2025学年三年级上册科学教科版
- 期末 (试题) -2024-2025学年人教PEP版英语六年级上册
- 动车运用所施工组织设计
- 新闻媒体编辑与发布规范流程
评论
0/150
提交评论