




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北师大第二附属中学2024年高一下数学期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则以下不等式一定成立的是()A. B. C. D.2.若两等差数列,前项和分別为,,满足,则的值为().A. B. C. D.3.已知向量,,若,则锐角α为()A.45° B.60° C.75° D.30°4.下列函数中,值域为的是()A. B. C. D.5.对变量有观测数据,得散点图(1);对变量有观测数据(,得散点图(2),由这两个散点图可以判断()A.变量与正相关,与正相关 B.变量与正相关,与负相关C.变量与负相关,与正相关 D.变量与负相关,与负相关6.在中,角所对应的边分别为,且满足,则的形状为()A.等腰三角形或直角三角形 B.等腰三角形C.直角三角形 D.等边三角形7.某学校高一、高二年级共有1800人,现按照分层抽样的方法,抽取90人作为样本进行某项调查.若样本中高一年级学生有42人,则该校高一年级学生共有()A.420人 B.480人 C.840人 D.960人8.已知直线经过点,且倾斜角为,则直线的方程为()A. B.C. D.9.读下面的程序框图,若输入的值为-5,则输出的结果是()A.-1 B.0 C.1 D.210.已知向量,满足,和的夹角为,则()A. B. C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.体积为8的一个正方体,其全面积与球的表面积相等,则球的体积等于________.12.设,则等于________.13.函数的递增区间是__________.14.设,,,则,,从小到大排列为______15.已知sin+cosα=,则sin2α=__16.若数列满足(,为常数),则称数列为“调和数列”,已知正项数列为“调和数列”,且,则的最大值是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图1,ABCD为菱形,∠ABC=60°,△PAB是边长为2的等边三角形,点M为AB的中点,将△PAB沿AB边折起,使平面PAB⊥平面ABCD,连接PC、PD,如图2,(1)证明:AB⊥PC;(2)求PD与平面ABCD所成角的正弦值(3)在线段PD上是否存在点N,使得PB∥平面MC?若存在,请找出N点的位置;若不存在,请说明理由18.某建筑公司用8000万元购得一块空地,计划在该地块上建造一栋至少12层、每层4000平方米的楼房.经初步估计得知,如果将楼房建为x(x≥12)层,则每平方米的平均建筑费用为Q(x)=3000+50x(单位:元).(1)求楼房每平方米的平均综合费用f(x)的解析式.(2)为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?每平方米的平均综合费用最小值是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)19.在中,已知内角所对的边分别为,已知,,的面积.(1)求边的长;(2)求的外接圆的半径.20.已知函数(1)求的定义域;(2)设是第三象限角,且,求的值.21.设有关于的一元二次方程.(Ⅰ)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
利用不等式的运算性质分别判断,正确的进行证明,错误的举出反例.【详解】没有确定正负,时,,所以不选A;当时,,所以不选B;当时,,所以不选D;由,不等式成立.故选C.【点睛】本题考查不等式的运算性质,比较法证明不等式,属于基本题.2、B【解析】解:因为两等差数列、前项和分别为、,满足,故,选B3、D【解析】
根据向量的平行的坐标表示,列出等式,即可求出.【详解】因为,所以,又为锐角,因此,即,故选D.【点睛】本题主要考查向量平行的坐标表示.4、B【解析】
依次判断各个函数的值域,从而得到结果.【详解】选项:值域为,错误选项:值域为,正确选项:值域为,错误选项:值域为,错误本题正确选项:【点睛】本题考查初等函数的值域问题,属于基础题.5、C【解析】
根据增大时的变化趋势可确定结果.【详解】图(1)中,随着的增大,的变化趋势是逐渐在减小,因此变量与负相关;图(2)中,随着的增大,的变化趋势是逐渐在增大,因此变量与正相关.故选:【点睛】本题考查根据散点图判断相关关系的问题,属于基础题.6、A【解析】
由正弦定理进行边化角,再由二倍角公式可得,则或,所以或,即可判断三角形的形状.【详解】由正弦定理得,则,因此在中,或,即或.故选:A【点睛】本题考查利用正弦定理进行边角互化,判断三角形形状,属于基础题.7、C【解析】
先由样本容量和总体容量确定抽样比,用高一年级抽取的人数除以抽样比即可求出结果.【详解】由题意需要从1800人中抽取90人,所以抽样比为,又样本中高一年级学生有42人,所以该校高一年级学生共有人.故选C【点睛】本题主要考查分层抽样,先确定抽样比,即可确定每层的个体数,属于基础题型.8、C【解析】
根据倾斜角求得斜率,再根据点斜式写出直线方程,然后化为一般式.【详解】倾斜角为,斜率为,由点斜式得,即.故选C.【点睛】本小题主要考查倾斜角与斜率对应关系,考查直线的点斜式方程和一般式方程,属于基础题.9、A【解析】
直接模拟程序框图运行,即可得出结论.【详解】模拟程序框图的运行过程如下:输入,进入判断结构,则,,输出,故选:A.【点睛】本题主要考查程序框图,一般求输出结果时,常模拟程序运行,列表求解.10、B【解析】
由平面向量的数量积公式,即可得到本题答案.【详解】由题意可得.故选:B.【点睛】本题主要考查平面向量的数量积公式,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由体积为的一个正方体,棱长为,全面积为,则,,球的体积为,故答案为.考点:正方体与球的表面积及体积的算法.12、【解析】
首先根据题中求出的周期,然后利用周期性即可求出答案.【详解】由题知,有,故的周期为,故,又因为,有.故答案为:.【点睛】本题考查了三角函数的周期性,属于基础题.13、;【解析】
先利用辅助角公式对函数化简,由可求解.【详解】函数,由,可得,所以函数的单调增区间为.故答案为:【点睛】本题考查了辅助角公式、正弦函数的图像与性质,需熟记公式与性质,属于基础题.14、【解析】
首先利用辅助角公式,半角公式,诱导公式分别求出,,的值,然后结合正弦函数的单调性对,,排序即可.【详解】由题知,,,因为正弦函数在上单调递增,所以.故答案为:.【点睛】本题考查了辅助角公式,半角公式,诱导公式,正弦函数的单调区间,属于基础题.15、【解析】∵,∴即,则.故答案为:.16、1【解析】因为数列是“调和数列”,所以,即数列是等差数列,所以,,所以,,当且仅当时等号成立,因此的最大值为1.点睛:本题考查创新意识,关键是对新定义的理解与转化,由“调和数列”的定义及已知是“调和数列”,得数列是等差数列,从而利用等差数列的性质可化简已知数列的和,结合基本不等式求得最值.本题难度不大,但考查的知识较多,要熟练掌握各方面的知识与方法,才能正确求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2).(3)存在,PN.【解析】
(1)只需证明AB⊥面PMC,即可证明AB⊥PC;(2)由PM⊥面ABCD得∠PDM为PD与平面ABCD所成角,解△PDM即可求得PD与平面ABCD所成角的正弦值.(3)设DB∩MC=E,连接NE,可得PB∥NE,.即可.【详解】(1)证明:∵△PAB是边长为2的等边三角形,点M为AB的中点,∴PM⊥AB.∵ABCD为菱形,∠ABC=60°.∴CM⊥AB,且PM∩MC=M,∴AB⊥面PMC,∵PC⊂面PMC,∴AB⊥PC;(2)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PM⊥AB.∴PM⊥面ABCD,∴∠PDM为PD与平面ABCD所成角.PM,MD,PDsin∠PMD,即PD与平面ABCD所成角的正弦值为.(3)设DB∩MC=E,连接NE,则有面PBD∩面MNC=NE,∵PB∥平面MNC,∴PB∥NE.∴.线段PD上存在点N,使得PB∥平面MNC,且PN.【点睛】本题考查了面面垂直的性质定理、线面垂直的判定定理、线面角,利用线面平行的性质定理确定点N的位置是关键,属于中档题..18、(1);(2)该楼房应建为20层,每平方米的平均综合费用最小值为5000元.【解析】【试题分析】先建立楼房每平方米的平均综合费用函数,再应基本不等式求其最小值及取得极小值时:解:设楼房每平方米的平均综合费用,,当且仅当时,等号取到.所以,当时,最小值为5000元.19、(1);(2)【解析】
(1)由三角形面积公式可构造方程求得结果;(2)利用余弦定理可求得;利用正弦定理即可求得结果.【详解】(1)由得:,解得:(2)由余弦定理得:由正弦定理得:【点睛】本题考查利用正弦定理、余弦定理和三角形面积公式解三角形的问题,考查学生对于解三角形部分的公式掌握的熟练程度,属于基础应用问题.20、(1)(2)【解析】
(1)由分母不为0可求得排烟阀;(2)由同角间的三角函数关系求得,由两角差的余弦公式展开,再由二倍角公式化为单角的函数,最后代入的值可得.【详解】(1)由得,,所以,,故的定义域为(答案写成“”也正确)(2)因为,且是第三象限角,所以由可解得,.故.【点睛】本题考查三角函数的性质,考查同角间的三角函数关系,考查应用两角差的余弦公式和二倍角公式求值.三角函数求值时一般要先化简再求值,这样计算可以更加简便,保证正确.21、(Ⅰ)(Ⅱ)【解析】
(1)本题是一个古典概型,可知基本事件共12个,方程当时有实根的充要条件为,满足条件的事件中包含9个基本事件,由古
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省枣庄达标名校2025年初三5月基础测试数学试题含解析
- 上海市闵行区达标名校2024-2025学年初三5月学段考试语文试题含解析
- 铅锭购销合同
- 辽宁省抚顺县2018-2019学年八年级上学期期末模拟检测物理试题【含答案】
- 信息技术专业服务承包合同
- 网约车平台车牌照租赁合同范本
- 电子邮箱服务提供商合同
- 舞蹈常用术语
- 华贵大气的牡丹动态模板
- 爱丽斯特元宵欢乐嘉年华活动策划
- 中华人民共和国特种设备安全法简介(131张)课件
- 餐饮商户三关一闭检查表
- 【iSlidePPT作品】埃隆-马斯克人物生平PPT课件
- COOK培养箱主要特点参数
- 送达地址确认书(法院最新版)
- 四肢骨折的固定搬运课件
- (高清正版)T_CAGHP 055—2019 滑坡崩塌防治削方减载工程设计规范(试行)
- 预制箱梁回弹强度偏低及原因报告
- 有效提升投诉客户满意度QC小组成果材料
- F5负载均衡运维配置手册V10
- 管道支架重量计算表(计算支架)
评论
0/150
提交评论