版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省滨州市邹平一中2024届高一下数学期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,,,则的面积为A. B. C. D.2.等比数列的各项均为正数,且,则()A. B. C. D.3.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元4.设公差为-2的等差数列,如果,那么等于()A.-182 B.-78 C.-148 D.-825.设等差数列的前n项和为,首项,公差,,则最大时,n的值为()A.11 B.10 C.9 D.86.已知变量与负相关,且由观测数据算得样本平均数,则由该观测数据算得的线性回归方程可能是A. B.C. D.7.函数图像的一个对称中心是()A. B. C. D.8.直线过点,且与以为端点的线段总有公共点,则直线斜率的取值范围是()A. B. C. D.9.在边长为的正方形内有一个半径为1的圆,向正方形中随机扔一粒豆子(忽略大小,视为质点),若它落在该圆内的概率为,则用随机模拟的方法得到的圆周率的近似值为()A. B. C. D.10.一个平面截一球得到直径为6的圆面,球心到这个圆面的距离为4,则这个球的体积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若点在幂函数的图像上,则函数的反函数=________.12.在中,已知M是AB边所在直线上一点,满足,则________.13.已知数列中,,,则数列通项___________14.方程组的增广矩阵是________.15.若,则________.16.如果,,则的值为________(用分数形式表示)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.求:(1)函数的最大值、最小值及最小正周期;(2)函数的单调递增区间.18.已知数列满足,.(1)求数列的通项公式;(2)当时,证明不等式:.19.在ΔABC中,角A,B,C的对边分别为a,b,c,a=8,c-1(1)若ΔABC有两解,求b的取值范围;(2)若ΔABC的面积为82,B>C,求b-c20.甲,乙两机床同时加工直径为100cm的零件,为检验质量,各从中抽取6件测量的数据为:甲:99,100,98,100,100,103乙:99,100,102,99,100,100(1)分别计算两组数据的平均数及方差(2)根据计算结果判断哪台机床加工零件的质量更稳定.21.已知函数,(1)若,求a的值,并判断的奇偶性;(2)求不等式的解集.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
利用三角形中的正弦定理求出角B,利用三角形内角和求出角C,再利用三角形的面积公式求出三角形的面积,求得结果.【详解】因为中,,,,由正弦定理得:,所以,所以,所以,所以,故选C.【点睛】该题所考查的是有关三角形面积的求解问题,在解题的过程中,需要注意根据题中所给的条件,应用正弦定理求得,从而求得,之后应用三角形面积公式求得结果.2、D【解析】
本题首先可根据数列是各项均为正数的等比数列以及计算出的值,然后根据对数的相关运算以及等比中项的相关性质即可得出结果.【详解】因为等比数列的各项均为正数,,所以,,所以,故选D.【点睛】本题考查对数的相关运算以及等比中项的相关性质,考查的公式为以及在等比数列中有,考查计算能力,是简单题.3、D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误.综上,故选.4、D【解析】
根据利用等差数列通项公式及性质求得答案.【详解】∵{an}是公差为﹣2的等差数列,∴a3+a6+a9+…+a99=(a1+2d)+(a4+2d)+(a7+2d)+…+(a97+2d)=a1+a4+a7++a97+33×2d=50﹣132=﹣1.故选D.【点睛】本题主要考查了等差数列的通项公式及性质的应用,考查了运算能力,属基础题.5、B【解析】
由等差数列前项和公式得出,结合数列为递减数列确定,从而得到最大时,的值为10.【详解】由题意可得等差数列的首项,公差则数列为递减数列即当时,最大故选B。【点睛】本题对等差数列前项和以及通项公式,关键是将转化为,结合数列的单调性确定最大时,的值为10.6、D【解析】
由于变量与负相关,得回归直线的斜率为负数,再由回归直线经过样本点的中心,得到可能的回归直线方程.【详解】由于变量与负相关,排除A,B,把代入直线得:成立,所以在直线上,故选D.【点睛】本题考查回归直线斜率的正负、回归直线过样本点中心,考查基本数据处理能力.7、B【解析】
由题得,解出x的值即得函数图像的一个对称中心.【详解】由题得,所以,所以图像的对称中心是.当k=1时,函数的对称中心为.故选B【点睛】本题主要考查三角函数图像的对称中心的求法,意在考查学生对该知识的理解掌握水平,属于基础题.8、C【解析】
求出,判断当斜率不存在时是否满足题意,满足两数之外;不满足两数之间.【详解】,当斜率不存在时满足题意,即【点睛】本题主要考查斜率公式的应用,属于基础题.9、A【解析】
通过几何概型可得答案.【详解】由几何概型可知,则.【点睛】本题主要考查几何概型的相关计算,难度中等.10、C【解析】
过球心作垂直圆面于.连接与圆面上一点构造出直角三角形再计算球的半径即可.【详解】如图,过球心作垂直圆面于,连接与圆面上一点.则.故球的体积为.故选:C【点睛】本题主要考查了球中构造直角三角形求解半径的方法等.属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据函数经过点求出幂函数的解析式,利用反函数的求法,即可求解.【详解】因为点在幂函数的图象上,所以,解得,所以幂函数的解析式为,则,所以原函数的反函数为.故答案为:【点睛】本题主要考查了幂函数的解析式的求法,以及反函数的求法,其中熟记反函数的求法是解答的关键,着重考查了推理与运算能力,属于基础题.12、3【解析】
由M在AB边所在直线上,则,又,然后将,都化为,即可解出答案.【详解】因为M在直线AB上,所以可设,
可得,即,又,则由与不共线,所以,解得.故答案为:3【点睛】本题考查向量的减法和向量共线的利用,属于基础题.13、【解析】分析:在已知递推式两边同除以,可得新数列是等差数列,从而由等差数列通项公式求得,再得.详解:∵,∴两边除以得,,即,∵,∴,∴是以为首项,以为公差的等差数列,∴,∴.故答案为.点睛:在求数列公式中,除直接应用等差数列和等比数列的通项公式外,还有一种常用方法:对递推式化简变形,可构造出新数列为等差数列或等比数列,再由等差(比)数列的通项公式求出结论.这是一种转化与化归思想,必须掌握.14、【解析】
理解方程增广矩阵的涵义,即可由二元线性方程组,写出增广矩阵.【详解】由题意,方程组的增广矩阵为其系数以及常数项构成的矩阵,故方程组的增广矩阵是.故答案为:【点睛】本题考查了二元一次方程组与增广矩阵的关系,需理解增广矩阵的涵义,属于基础题.15、【解析】
观察式子特征,直接写出,即可求出。【详解】观察的式子特征,明确各项关系,以及首末两项,即可写出,所以,相比,增加了后两项,少了第一项,故。【点睛】本题主要考查学生的数学抽象能力,正确弄清式子特征是解题关键。16、【解析】
先求出,可得,再代值计算即可.【详解】.故答案为:【点睛】本题考查了等差数列的前项和公式、累乘相消法,考查了学生的计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最大值,最小值为,最小正周期;(2)【解析】
(1)根据即可求出最值,利用即可求出最小正周期;(2)根据复合函数的单调性,令即可得解.【详解】(1),函数的最大值为,最小值为;函数的最小正周期为.(2)令,得:,故函数的增区间为.【点睛】本题考查了三角函数的性质以及单调区间的求解,属于基础题.18、(1);(2)见解析.【解析】
(1)分和两种情况讨论,利用,可得出数列的通项公式;(2)由得,从而可得,即可证明出结论.【详解】(1),,.①当时,数列是各项均为的常数列,则;②当时,数列是以为首项,以为公比的等比数列,,.当时,也适合.综上所述,;(2)由,得,,,,因此,.【点睛】本题考查数列的通项,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.19、(1)(8,62);(2)【解析】
(1)由c-13b=acosB,利用正弦定理可得sinC-13sinB=sin【详解】(1)∵c-1∴sinC-∴sinA即sin∵sinB≠0,∴cosA=1若ΔABC有两解,∴bsin解得8<b<62,即b的取值范围为((2)由(1)知,SΔABC=1∵a2=b∴(b-c)2∵B>C,∴b-c=42【点睛】解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.20、(1);,,;(2)乙机床加工零件的质量更稳定.【解析】
(1)根据题中数据,结合平均数与方差的公式,即可得出结果;(2)根据(1)的结果,结合平均数与方差的意义,即可得出结果.【详解】(1)由题中数据可得:;,所以,;(2)两台机床所加工零件的直径的平均值相同,又所以乙机床加工零件的质量更稳定.【点睛】本题主要考查平均数与方差,熟记公式即可,属于常考题型.21、(1),,是偶函数(2)或【解析】
(1)先由已知求出,然后
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高校教师职业道德全真模拟考试试卷A卷含答案
- 2024年xx村年度脱贫户、监测户增收工作总结
- 牛津译林版英语高三上学期期末试题及答案指导
- 机电工程师招聘面试题与参考回答(某大型国企)
- 新修订《疫苗流通和预防接种管理条例》培训试题及答案
- 2024年简化货品采购协议格式
- 2024年限定区域分销商协议条款
- 2024年度工程领域劳务协议范本
- 2024年新汽车租赁经营协议样本
- 2024全新保健品商业合作协议样本
- 山东省济南市历下区2023-2024学年八年级上学期期中语文试题
- 图神经网络在生物医学影像分析中的应用
- 浅谈管理者的自我管理
- 第一章 结构及其设计 课件-2023-2024学年高中通用技术苏教版(2019)必修《技术与设计2》
- 语文教学常规检查表
- “思政”课社会实践
- 临时用电漏电保护器运行检测记录表
- 复杂性尿路感染
- 重度残疾儿童送教上门
- 膀胱癌综合治疗新进展
- 音乐ppt课件《小小的船》
评论
0/150
提交评论