




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市华东师大二附中2025届数学高一下期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线2x+y+4=0与圆x+22+y+32=5A.255 B.4552.设a>0,b>0,若是和的等比中项,则的最小值为()A.6 B. C.8 D.93.在△ABC中,,则A等于()A.30° B.60° C.120° D.150°4.我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为A.分 B.分 C.分 D.分5.在中,角、、所对的边分别为、、,如果,则的形状是()A.等腰三角形 B.等腰直角三角形C.等腰三角形或直角三角形 D.直角三角形6.已知命题,则命题的否定为()A. B.C. D.7.在空间直角坐标系中,点关于轴对称的点的坐标为()A. B. C. D.8.如图,在等腰梯形中,,于点,则()A. B.C. D.9.祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的.祖暅原理的内容是:“幂势既同,则积不容异”,“势”即是高,“幂”是面积.意思是,如果夹在两平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都是h),其中:三棱锥的体积为V,四棱锥的底面是边长为a的正方形,圆锥的底面半径为r,现用平行于这两个平面的平面去截三个几何体,如果得到的三个截面面积总相等,那么,下面关系式正确的是()A.,, B.,,C.,, D.,,10.供电部门对某社区1000位居民2019年4月份人均用电情况进行统计后,按人均用电量分为[0,10),[10,20),[20,30),[40,50]五组,整理得到如下的频率分布直方图,则下列说法错误的是()A.4月份人均用电量人数最多的一组有400人B.4月份人均用电量不低于20度的有500人C.4月份人均用电量为25度D.在这1000位居民中任选1位协助收费,选到的居民用电量在[30,40)一组的概率为1二、填空题:本大题共6小题,每小题5分,共30分。11.若为的最小内角,则函数的值域为_____.12.若数列满足(),且,,__.13.若点在幂函数的图像上,则函数的反函数=________.14.已知角的终边经过点,若,则______.15.已知,是夹角为的两个单位向量,向量,,若,则实数的值为________.16.已知函数,则的取值范围是____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数)(1)A类工人中和B类工人各抽查多少工人?(2)从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2:表1:生产能力分组人数48x53表2:生产能力分组人数6y3618①先确定x,y,再在答题纸上完成下列频率分布直方图.就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)②分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表)图1A类工人生产能力的频率分布直方图图2B类工人生产能力的频率分布直方图18.已知是夹角为的单位向量,且,.(1)求;(2)求与的夹角.19.在数列中,,,数列的前项和为,且.(1)证明:数列是等差数列.(2)若对恒成立,求的取值范围.20.已知△ABC的顶点A4,3,AB边上的高所在直线为x-y-3=0,D为AC中点,且BD所在直线方程为3x+y-7=0(1)求顶点B的坐标;(2)求BC边所在的直线方程。21.已知数列前项和(),数列等差,且满足,前9项和为153.(1)求数列、的通项公式;(2)设,数列的前项和为,求及使不等式对一切都成立的最小正整数的值;(3)设,问是否存在,使得成立?若存在,求出m的值;若不存在,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
先求出圆心到直线的距离d,然后根据圆的弦长公式l=2r【详解】由题意得,圆x+22+y+32=5圆心-2,-3到直线2x+y+4=0的距离为d=|2×(-2)-3+4|∴MN=2故选C.【点睛】求圆的弦长有两种方法:一是求出直线和圆的交点坐标,然后利用两点间的距离公式求解;二是利用几何法求解,即求出圆心到直线的距离,在由半径、弦心距和半弦长构成的直角三角形中运用勾股定理求解,此时不要忘了求出的是半弦长.在具体的求解中一般利用几何法,以减少运算、增强解题的直观性.2、D【解析】
试题分析:由题意a>0,b>0,且是和的等比中项,即,则,当且仅当时,即时取等号.考点:重要不等式,等比中项3、C【解析】
试题分析:考点:余弦定理解三角形4、B【解析】
首先“冬至”时日影长度最大,为1350分,“夏至”时日影长度最小,为160分,即可求出,进而求出立春”时日影长度为.【详解】解:一年有二十四个节气,每相邻两个节气之间的日影长度差为分,且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分.,解得,“立春”时日影长度为:分.故选B.【点睛】本题考查等差数列的性质等基础知识,考查运算求解能力,利用等差数列的性质直接求解.5、C【解析】
结合正弦定理和三角恒等变换及三角函数的诱导公式化简即可求得结果【详解】利用正弦定理得,化简得,即,则或,解得或故的形状是等腰三角形或直角三角形故选:C【点睛】本题考查根据正弦定理和三角恒等变化,三角函数的诱导公式化简求值,属于中档题6、C【解析】
根据全称命题的否定是特称命题,可直接得出结果.【详解】命题“”的否定是“”.故选C【点睛】本题主要考查全称命题的否定,只需改量词和结论即可,属于基础题型.7、A【解析】
在空间直角坐标系中,点关于轴对称的点的坐标为.【详解】根据对称性,点关于轴对称的点的坐标为.故选A.【点睛】本题考查空间直角坐标系和点的对称,属于基础题.8、A【解析】
根据等腰三角形的性质可得是的中点,由平面向量的加法运算法则结合向量平行的性质可得结果.【详解】因为,所以是的中点,可得,故选.【点睛】本题主要考查向量的几何运算以及向量平行的性质,属于简单题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单)9、D【解析】
由祖暅原理可知:三个几何体的体积相等,根据椎体体积公式即可求解.【详解】由祖暅原理可知:三个几何体的体积相等,则,解得,由,解得,所以.故选:D【点睛】本题考查了椎体的体积公式,需熟记公式,属于基础题.10、C【解析】
根据频率分布直方图逐一计算分析.【详解】A:用电量最多的一组有:0.04×10×1000=400人,故正确;B:不低于20度的有:(0.01+0.05)×10×1000=500人,故正确;C:人均用电量:(5×0.01+15×0.04+25×0.03+35×0.01+45×0.01)×10=22,故错误;D:用电量在[30,40)的有:0.01×10×1000=100人,所以P=100故选C.【点睛】本题考查利用频率分布直方图求解相关量,难度较易.频率分布直方图中平均数的求法:每一段的组中值×频率二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
依题意,,利用辅助角公式得,利用正弦函数的单调性即可求得的取值范围,在利用换元法以及同角三角函数基本关系式把所求问题转化结合基本不等式即可求解.【详解】∵为的最小内角,故,又,因为,故,∴取值范围是.令,则且∴,令,由双勾函数可知在上为增函数,故,故.故答案为:.【点睛】本题考查同角的三角函数的基本关系、辅助角公式以及正弦型函数的值域,注意根据代数式的结构特点换元后将三角函数的问题转化为双勾函数的问题,本题属于中档题.12、1【解析】
由数列满足,即,得到数列的奇数项和偶数项分别构成公比为的等比数列,利用等比数列的极限的求法,即可求解.【详解】由题意,数列满足,即,又由,,所以数列的奇数项构成首项为1,公比为,偶数项构成首项为,公比为的等比数列,当为奇数时,可得,当为偶数时,可得.所以.故答案为:1.【点睛】本题主要考查了等比数列的定义,以及无穷等比数列的极限的计算,其中解答中得出数列的奇数项和偶数项分别构成公比为的等比数列是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解析】
根据函数经过点求出幂函数的解析式,利用反函数的求法,即可求解.【详解】因为点在幂函数的图象上,所以,解得,所以幂函数的解析式为,则,所以原函数的反函数为.故答案为:【点睛】本题主要考查了幂函数的解析式的求法,以及反函数的求法,其中熟记反函数的求法是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】
利用三角函数的定义可求.【详解】由三角函数的定义可得,故.故答案为:.【点睛】本题考查三角函数的定义,注意根据正弦的定义构建关于的方程,本题属于基础题.15、【解析】
由题意得,且,,由=,解得即可.【详解】已知,是夹角为的两个单位向量,所以,得,若解得故答案为【点睛】本题考查了向量数量积的运算性质,考查了计算能力,属于基础题.16、【解析】
分类讨论,去掉绝对值,利用函数的单调性,求得函数各段上的取值,进而得到函数的取值范围,得到答案.【详解】由题意,当时,函数,此时函数为单调递减函数,所以最大值为,此时函数的取值当时,函数,此时函数为单调递减函数,所以最大值为,最小值,所以函数的取值为当时,函数,此时函数为单调递增函数,所以最大值为,此时函数的取值,综上可知,函数的取值范围是.【点睛】本题主要考查了分段函数的值域问题,其中解答中合理分类讨论去掉绝对值,利用函数的单调性求得各段上的值域是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)25,75(2)①5,15,直方图见解析,B类②123,133.8,131.1【解析】
(1)先计算抽样比为,进而可得各层抽取人数(2)①类、类工人人数之比为,按此比例确定两类工人需抽取的人数,再算出和即可.画出频率分布直方图,从直方图可以判断:类工人中个体间的差异程度更小②取每个小矩形的横坐标的中点乘以对应矩形的面积相加即得平均数.【详解】(1)由已知可得:抽样比,故类工人中应抽取:人,类工人中应抽取:人,(2)①由题意知,得,,得.满足条件的频率分布直方图如下所示:从直方图可以判断:类工人中个体间的差异程度更小.②,类工人生产能力的平均数,类工人生产能力的平均数以及全工厂工人生产能力的平均数的估计值分别为123,133.8和131.1【点睛】本题考查等可能事件、相互独立事件的概率、频率分布直方图的理解以及利用频率分布直方图求平均数等知识、考查运算能力.18、(1)(2)【解析】试题分析:(1)根据题知,由向量的数量积公式进行运算即可,注意,在去括号的向量运算过程中可采用多项式的运算方法;(2)根据向量数量积公式,可先求出的值,又,从而可求出的值.试题解析:(1)==(2)19、(1)见解析(2)【解析】
(1)根据已知可变形为常数;(2)首先求数列的通项公式,然后利用裂项相消法求,若满足对恒成立,需满足,,求的取值范围.【详解】(1)证明:因为,所以,,则.又,故数列是以1为首项,2为公差的等差数列.(2)由(1)可知,则.因为,所以,所以.易知单调递增,则.所以,且,解得.故的取值范围为.【点睛】本题考查了证明等差数列的方法,以及裂项相消法求和,本题的一个亮点是与函数结合考查数列的最值问题,涉及最值时,需先判断函数的单调性,可以根据函数特征直接判断单调性或是根据的正负判断单调性,然后求最值.20、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025实习生合同协议书 (标准版)
- 2025年二手住宅买卖合同
- 农户加入合作社协议
- 大学教育教学研究课题合同
- 个人房屋按季租金出租合同
- 北京市室内装修合同
- 学校保安用工合同
- 大厦商业广告位租赁合同
- 《2025车辆临时借用合同》
- 编导培训收费协议书
- 电缆沟、电缆管、电缆井专项施工方案
- 2024年公务员考试中财务知识的考察试题及答案
- 治理盐碱可行性报告
- 《人工智能技术基础》课件-第六章 知识图谱
- 2025年山东省济南市市中区中考物理一模试卷(无答案)
- (三模)吉林市2025届高三第三次模拟测试 英语试卷(含答案详解)
- 2024-2030年中国驱蚊用品行业市场深度分析及投资策略研究报告
- 广东省深圳市宝安区10校联考2023-2024学年八年级下学期4月期中物理试题(含答案)
- 2024年辽宁沈阳地铁集团有限公司所属公司招聘笔试真题
- 2024年中国移动招聘笔试真题
- 2025年安阳职业技术学院单招职业技能测试题库及答案一套
评论
0/150
提交评论