版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届北京市第四十三中学高一数学第二学期期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数f(x)=x,x≥0,|x2A.a<0 B.0<a<1 C.a>1 D.a≥12.在中,且,则等于()A. B. C. D.3.问题:①有1000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ.随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法.其中问题与方法能配对的是()A.①Ⅰ,②Ⅱ B.①Ⅲ,②Ⅰ C.①Ⅱ,②Ⅲ D.①Ⅲ,②Ⅱ4.函数(,)的部分图象如图所示,则的值分别是()A. B. C. D.5.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是()A. B. C. D.6.已知直线3x−y+1=0的倾斜角为α,则A. B.C.− D.7.已知数列的前项和为,直线与圆:交于两点,且.记,其前项和为,若存在,使得有解,则实数取值范围是()A. B. C. D.8.在中,角所对的边分别为,若,则此三角形()A.无解 B.有一解 C.有两解 D.解的个数不确定9.如图所示,在正四棱锥中,分别是,,的中点,动点在线段上运动时,下列结论不恒成立的是().A.与异面 B.面 C. D.10.记为等差数列的前n项和.若,,则等差数列的公差为()A.1 B.2 C.4 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.在等差数列中,若,则______.12.设,,,,则数列的通项公式=.13.已知,,,若,则__________.14.若直线与曲线相交于A,B两点,O为坐标原点,当的面积取最大值时,实数m的取值____.15.已知公式,,借助这个公式,我们可以求函数的值域,则该函数的值域是______.16.已知直线平分圆的周长,则实数________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.2015年我国将加快阶梯水价推行,原则是“保基本、建机制、促节约”,其中“保基本”是指保证至少80%的居民用户用水价格不变.为响应国家政策,制定合理的阶梯用水价格,某城市采用简单随机抽样的方法分别从郊区和城区抽取5户和20户居民的年人均用水量进行调研,抽取的数据的茎叶图如下(单位:吨):(1)在郊区的这5户居民中随机抽取2户,求其年人均用水量都不超过30吨的概率;(2)设该城市郊区和城区的居民户数比为,现将年人均用水量不超过30吨的用户定义为第一阶梯用户,并保证这一梯次的居民用户用水价格保持不变.试根据样本估计总体的思想,分析此方案是否符合国家“保基本”政策.18.已知扇形的半径为3,面积为9,则该扇形的弧长为___________.19.已知函数,将的图象向左平移个单位后得到的图象,且在区间内的最大值为.(1)求实数的值;(2)求函数与直线相邻交点间距离的最小值.20.已知函数(1)求的定义域;(2)设是第三象限角,且,求的值.21.某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(I)求应从小学、中学、大学中分别抽取的学校数目.(II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,(1)列出所有可能的抽取结果;(2)求抽取的2所学校均为小学的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
令g(x)=0得f(x)=a,再利用函数的图像分析解答得到a的取值范围.【详解】令g(x)=0得f(x)=a,函数f(x)的图像如图所示,当直线y=a在x轴和直线x=1之间时,函数y=f(x)的图像与直线y=a有四个零点,所以0<a<1.故选:B【点睛】本题主要考查函数的图像和性质,考查函数的零点问题,意在考查学生对这些知识的理解掌握水平,属于中档题.2、A【解析】
在△ABC中,利用正弦定理与两角和的正弦化简已知可得,sin(A+C)=sinB,结合a>b,即可求得答案.【详解】在△ABC中,∵asinBcosC+csinBcosAb,∴由正弦定理得:sinAsinBcosC+sinCsinBcosAsinB,sinB≠0,∴sinAcosC+sinCcosA,∴sin(A+C),又A+B+C=π,∴sin(A+C)=sin(π﹣B)=sinB,又a>b,∴B.故选A.【点睛】本题考查两角和与差的正弦函数与正弦定理的应用,考查了大角对大边的性质,属于中档题.3、B【解析】解:(1)中由于小区中各个家庭收入水平之间存在明显差别故(1)要采用分层抽样的方法(2)中由于总体数目不多,而样本容量不大故(2)要采用简单随机抽样故问题和方法配对正确的是:(1)Ⅲ(2)Ⅰ.故选B.4、A【解析】
利用,求出,再利用,求出即可【详解】,,,则有,代入得,则有,,,又,故答案选A【点睛】本题考查三角函数的图像问题,依次求出和即可,属于简单题5、B【解析】
由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方程为,则,圆心在内公切线两侧,,可得,,化为,,即,,的取值范围,故选B.【点睛】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.6、A【解析】
由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值.【详解】直线3x-y+1=0的倾斜角为α,∴tanα=3,
∴,
故选A.【点睛】本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题.7、D【解析】
根据题意,先求出弦长,再表示出,得到,求出数列的通项公式,再表示出,用错位相减求和求出,再求解即可.【详解】根据题意,圆的半径,圆心到直线的距离,所以弦长,所以,当时,,所以,时,,所以,得,所以数列是以为首项,为公比的等比数列,所以,,,所以,,,所以,由有解,,只需大于的最小值即可,因为,所以,所以.故选:D【点睛】本题主要考查求圆的弦长、由和求数列通项、错位相减求数列的和和解不等式有解的情况,考查学生的分析转化能力和计算能力,属于难题.8、C【解析】
利用正弦定理求,与比较的大小,判断B能否取相应的锐角或钝角.【详解】由及正弦定理,得,,B可取锐角;当B为钝角时,,由正弦函数在递减,,可取.故选C.【点睛】本题考查正弦定理,解三角形中何时无解、一解、两解的条件判断,属于中档题.9、D【解析】如图所示,连接AC、BD相交于点O,连接EM,EN.(1)由正四棱锥S−ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=N,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故C正确.(2)由异面直线的定义可知:EP与SD是异面直线,故A正确;(3)由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此B正确.(4)当P与M重合时,有∥,其他情况都是异面直线即D不正确.故选D点睛:本题抓住正四棱锥的特征,顶点在底面的投影为底面正方形的中心,即SO⊥底面ABCD,EP为动直线,所以要证EP∥面,可先证EP所在的平面平行于面SBD,要证⊥可先证AC垂直于EP所在的平面,所以化动为静的处理思想在立体中常用.10、B【解析】
利用等差数列的前n项和公式、通项公式列出方程组,能求出等差数列{an}的公差.【详解】∵为等差数列的前n项和,,,∴,解得d=2,a1=5,∴等差数列的公差为2.故选:B.【点睛】本题考查等差数列的公差,此类问题根据题意设公差和首项为d、a1,列出方程组解出即可,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用等差中项的性质可求出的值.【详解】由等差中项的性质可得,解得.故答案为:.【点睛】本题考查利用等差中项的性质求项的值,考查计算能力,属于基础题.12、2n+1【解析】由条件得,且,所以数列是首项为4,公比为2的等比数列,则.13、-3【解析】由可知,解得,14、【解析】
点O到的距离,将的面积用表示出来,再利用均值不等式得到答案.【详解】曲线表示圆心在原点,半径为1的圆的上半圆,若直线与曲线相交于A,B两点,则直线的斜率,则点O到的距离,又,当且仅当,即时,取得最大值.所以,解得舍去).故答案为.【点睛】本题考查了点到直线的距离,三角形面积,均值不等式,意在考查学生的计算能力.15、【解析】
根据题意,可令,结合,再进行整体代换即可求解【详解】令,则,,,则,,,则函数值域为故答案为:【点睛】本题考查3倍角公式的使用,函数的转化思想,属于中档题16、1【解析】
由题得圆心在直线上,解方程即得解.【详解】由题得圆心(1,a)在直线上,所以.故答案为1【点睛】本题主要考查直线和圆的位置关系,意在考查学生对该知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)符合【解析】
:(1)先列举出从5户郊区居民用户中随机抽取2户,其年人均用水量构成的所有基本事件,再列举其中年人均用水量都不超过30吨的基本事件,最后计算即可.(2)设该城市郊区的居民用户数为,则其城区的居民用户数为5a.依题意计算该城市年人均用水量不超过30吨的居民用户的百分率.【详解】解:(1)从5户郊区居民用户中随机抽取2户,其年人均用水量构成的所有基本事件是:(19,25),(19,28),(19,32),(19,34),(25,28),(25,32),(25,34),(28,32),(28,34),(32,34)共10个.其中年人均用水量都不超过30吨的基本事件是:(19,25),(19,28),(25,28)共3个.设“从5户郊区居民用户中随机抽取2户,其年人均用水量都不超过30吨”的事件为,则所求的概率为.(2)设该城市郊区的居民用户数为,则其城区的居民用户数为5a.依题意,该城市年人均用水量不超过30吨的居民用户的百分率为:.故此方案符合国家“保基本”政策.【点睛】本题考查了古典概型在实际生活中的应用,要紧扣题意从题目中抽象出数学计算的模型.18、6【解析】
直接利用扇形的面积公式,即可得到本题答案.【详解】因为扇形的半径,扇形的面积,由,得,所以该扇形的弧长为6.故答案为:6【点睛】本题主要考查扇形的面积公式的应用.19、(1)1;(2)【解析】
(1)将化简可得,再由平移变换可得,由在区间内的最大值为,可得的值;(2)解方程,可得所求相交点距离的最小值.【详解】解:(1)所以,,∴当时,即时,函数取得最大值,∴.(2)根据题意,令,,∴或,.解得或,.因为,当时取等号,∴相邻交点间距离的最小值是.【点睛】本题主要考查三角函数的平移变化及三角恒等变换与三角函数的性质,属于中档题.20、(1)(2)【解析】
(1)由分母不为0可求得排烟阀;(2)由同角间的三角函数关系求得,由两角差的余弦公式展开,再由二倍角公式化为单角的函数,最后代入的值可得.【详解】(1)由得,,所以,,故的定义域为(答案写成“”也正确)(2)因为,且是第三象限角,所以由可解得,.故.【点睛】本题考查三角函数的性质,考查同角间的三角函数关系,考查应用两角差的余弦公式和二倍角公式求值.三角函数求值时一般要先化简再求值,这样计算可以更加简便,保证正确.21、(1)3,2,1(2)【解析】(1)从小学、中学、大学中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论