版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年公务员行测《数量关系》试题第一部分单选题(200题)1、甲、乙、丙三辆汽车分别从A地开往千里之外的B地。若乙比甲晚出发30分钟,则乙出发后2小时追上甲;若丙比乙晚出发20分钟,则丙出发后5小时追上乙。若甲出发10分钟后乙出发,当乙追上甲时,丙才出发,则丙追上甲所需时间是()。
A、110分钟
B、150分钟
C、127分钟
D、128分钟
【答案】:答案:B
解析:设甲、乙、丙三辆汽车的速度分别为x、y、z。由于甲行驶30分钟的路程,乙需要2小时才能追上,则30x=(y-x)×2×60,化简得x∶y=4∶5。又因乙行驶20分钟的路程,丙需要5小时才能追上,则20y=(z-y)×5×60,化简得y∶z=15∶16。所以三辆汽车的速度x∶y∶z=12∶15∶16。赋值甲、乙、丙的速度分别为12、15、16,甲出发10分钟后乙出发,则乙追上甲的时间为(分钟),故丙出发时甲已经行驶10+40=50(分钟),设丙追上甲所需时间是t分钟,可得方程12×50=(16-12)×t,解得t=150。故选B。2、某高速公路收费站对过往车辆的收费标准是:大型车30元/辆、中型车15元/辆、小型车10元/辆。某天,通过收费站的大型车与中型车的数量比是5∶6,中型车与小型车的数量比是4∶11,小型车的通行费总数比大型车的多270元,这天的收费总额是()。
A、7280元
B、7290元
C、7300元
D、7350元
【答案】:答案:B
解析:大、中、小型车的数量比为10∶12∶33。以10辆大型车、12辆中型车、33辆小型车为一组。每组小型车收费比大型车多33×10-10×30=30元。实际多270元,说明共通过了270÷30=9组。每组收费10×30+12×15+33×10=810元,收费总额为9×810=7290元。故选B。3、小张购买了2个苹果、3根香蕉、4个面包和5块蛋糕,共消费58元。如果四种商品的单价都是正整数且各不相同,则每块蛋糕的价格最高可能为多少元?()
A、5
B、6
C、7
D、8
【答案】:答案:D
解析:设苹果、香蕉、面包、蛋糕的单价分别为x、y、z、w,根据共消费58元,得2x+3y+4z+5w=58。代入排除,根据最高,优先从值最大的选项代入。D选项,当w=8时,可得2x+3y+4z=18,由2x、4z、18均为偶数,则3y为偶数,即y为偶数且小于6。当y=2,有2x+4z=12,即x+2z=6,均为正整数且各不相同,若z=1,则x=4,此时满足题意。故选D。4、8,6,-4,-54,()
A、-118
B、-192
C、-320
D、-304
【答案】:答案:D
解析:依次将相邻两个数中后一个数减去前一个数得-2,-10,-50,构成公比为5的等比数列,即所填数字为-54+(-250)=-304。故选D。5、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故选C。6、0,3,18,33,68,95,()
A、145
B、148
C、150
D、153
【答案】:答案:C
解析:原数列写为0=0×1,3=1×3,18=2×9,33=3×11,68=4×17,95=5×19,其中1,3,9,11,17,19构成的数列奇数项是等差数列,偶数项也是等差数列。故空缺处数字为6×25=150。故选C。7、1,1,2,8,64,()
A、1024
B、1280
C、512
D、128
【答案】:答案:A
解析:后一项除以前一项得1、2、4、8、(16),构成公比为2的等比数列,64×16=(1024)。故选B。8、2,3,6,15,()
A、25
B、36
C、42
D、64
【答案】:答案:C
解析:相邻两项间做差。做差后得到的数为1,3,9;容易观察出这是一个等比数列,所以做差数列的下一项为27,则答案为15+27=42。故选C。9、依法纳税是公民的义务,按规定,全月工资薪金所得不超过800元的部分不必纳税,超过800元的部分,按下列分段累进计算税款,某人5月份应交纳此项税款26.78元,则他的当月工资薪金所得介于()。
A、800~900
B、900~1200
C、1200~1500
D、1500~2800
【答案】:答案:C
解析:根据表格:工资中800~1300的部分,需纳税500×5%=25(元);还剩税款26.78-25=1.78(元),即在1300元以上的部分为(元),则他当月工资薪金为1300+17.8=1317.8(元)。故选C。10、某商店以5元/斤的价格购入一批蔬菜,上午以8元/斤的价格卖出总进货量的60%,中午以上午售出价的8折卖出总进货量的20%,下午以中午售出价的一半卖出剩余货量的一半,最后获利210元。则该商店一共购入多少斤蔬菜?()
A、140
B、150
C、160
D、180
【答案】:答案:B
解析:赋值购进的量为10斤,上午以8元/斤的价格卖出6斤,中午以6.4元/斤的价格卖出2斤,下午以3.2元/斤的价格卖出1斤,总收入=8×6+6.4×2+3.2×1=64元,总利润=64-5×10=14元,实际购入(210/14)×10=150斤。故选B。11、2,3,1,2,6,7,()
A、9
B、5
C、11
D、24
【答案】:答案:B
解析:依次将相隔两项做和2+1=3、3+2=5、1+6=7、2+7=9,是公差为2的等差数列。即所填数字为(9+2)-6=5。故选B。12、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一倍,则步行了多少分钟?()
A、20
B、34
C、40
D、50
【答案】:答案:A
解析:设骑车速度为2,步行速度为1,设步行时间为t分钟,由题意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分钟。故选A。13、有一个五位数,左边的三位数比右边的两位数的4倍还多4,如果把右边两位数移到最前面,新的五位数比原来的2倍还多11122,则原来的五位数是()。
A、18044
B、24059
C、27267
D、30074
【答案】:答案:B
解析:多位数问题考虑用代入排除法解题。代入A选项,180=44×4+4,但44180≠18044×2+11122,不符合题意,排除;代入B选项,240=59×4+4,59240=24059×2+11122,符合题意,正确。故选B。14、某服装店有一批衬衣共76件,分别卖给了33位顾客,每位顾客最多买了3件。衬衣定价为100元,买1件按原价,买2件总价打九折,买3件总价打八折。最后卖完这批衬衣共收入6460元,则买了3件的顾客有()位。
A.4
B.8
C.14
D.15
【答案】:答案:C
解析:由题意可设买了1件、2件、3件衣服的人数分别为x、y、z人,则可得x+y+z=33,x+2y+3z=76,,联立求解可得x=4,y=15,z=14。故正确答案为C。15、130,68,30,(),2
A、11
B、12
C、10
D、9
【答案】:答案:C
解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故选C。16、21,59,1117,2325,(),9541
A、3129
B、4733
C、6833
D、8233
【答案】:答案:B
解析:原数列各项可作如下拆分:[2|1],[5|9],[11|17],[23|25],[47|33],[95|41]。其中前半部分数字作差后构成等比数列,后半部分作差后构成等差数列。因此未知项为4733。故选B。17、1806,1510,1214,918,()
A、724
B、722
C、624
D、622
【答案】:答案:D
解析:百位和千位看做一个数列,是18,15,12,9,构成公差为-3的等差数列,所以下一项应为6;十位和个位看做一个数列,是06,10,14,18,构成公差为4的等差数列,所以下一项应为22。故未知项应为622。故选D。18、3,11,13,29,31,()
A、52
B、53
C、54
D、55
【答案】:答案:D
解析:奇偶项分别相差11-3=8,29-13=16=8×2,问号-31=24=8×3则可得?=55。故选D。19、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多少?()
A、256
B、486
C、556
D、376
【答案】:答案:B
解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不如将它换成2个3。因为2×2×2=8,而3×3=9。故拆分出的自然数中,至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为243×2=486。故选B。20、某班有56名学生,每人都参加了a、b、c、d、e五个兴趣班中的一个。已知有27人参加a兴趣班,参加b兴趣班的人数第二多,参加c、d兴趣班的人数相同,e兴趣班的参加人数最少,只有6人,问参加b兴趣班的学生有多少个?()
A、7个
B、8个
C、9个
D、10个
【答案】:答案:C
解析:设b班人数为x,c、d班的人数均为y,由b班人数第二多,e班人数最少,可知各班人数关系为:27>x>y>6。该班有56名学生,56=27+x+y+y+6,即x+2y=23,其中2y是偶数,23为奇数,则x为奇数,排除B、D。代入A选项,当x=7时,y=8,则x<Y,不符合题意,排除。故选C。21、甲、乙二人现在的年龄之和是一个完全平方数。7年前,他们各自的年龄都是完全平方数。再过多少年,他们的年龄之和又是完全平方数?()
A、20
B、18
C、16
D、9
【答案】:答案:B
解析:设七年前甲、乙的年龄分别为x、y岁,则七年后两人的年龄和为(x+7)+(y+7)=x+y+14,根据题意x、y、x+y+14均为完全平方数。100以内的平方数有1、4、9、16、25、36、49、64、81、100,其中1+49+14=64,1、49、64均为完全平方数,则七年前甲1岁,乙49岁,现在甲为8岁,乙为56岁,年龄和为64,甲乙年龄和为偶数,下一个平方数为偶数的是100,需要再过(100-64)÷2=18年。故选B。22、团体操表演中,编号为1~100的学生按顺序排成一列纵队,编号为1的学生拿着红、黄、蓝三种颜色的旗帜,以后每隔2个学生有1人拿红旗,每隔3个学生有1人拿蓝旗,每隔6个学生有1人拿黄旗。问所有学生中有多少人拿两种颜色以上的旗帜?()
A、13
B、14
C、15
D、16
【答案】:答案:B
解析:每隔n个人意为每(n+1)个人,则拿红、蓝、黄旗的周期分别为3、4、7。除编号为1的学生外还剩99人,同时拿红、蓝旗的编号为12(3和4的公倍数)的倍数,99÷12=8.25,有8人;同理,同时拿红、黄旗的编号为21(3和7的公倍数)的倍数,99÷21=4.7,有4人;同时拿蓝、黄旗的编号为28(4和7的公倍数)的倍数,99÷28=3.5,有3人;同时拿红蓝黄旗的编号为84(3、4和7的公倍数)的倍数,99÷84=1.1,有1人。拿两种颜色以上的旗帜共有8+4+3+1-2×1=14(人)。故选B。23、2,3,8,27,32,(),128
A、64
B、243
C、275
D、48
【答案】:答案:B
解析:间隔组合数列。奇数项是公比为4的等比数列,偶数项是公比为9的等比数列,所求项为27×9=(243)。故选B。24、某杂志为每篇投稿文章安排两位审稿人,若都不同意录用则弃用;若都同意则录用;若两人意见不同,则安排第三位审稿人,并根据其意见录用或弃用,如每位审稿人录用某篇文章的概率都是60%,则该文章最终被录用的概率是()。
A、36%
B、50.4%
C、60%
D、64.8%
【答案】:答案:D
解析:根据题意,该文章最终被录用可分为以下两种情况:(1)前两位审稿人都同意,概率为0.6×0.6=0.36;(2)前两位审稿人只有一人同意且第三位审稿人同意,概率为;故该文章最终被录用的概率为0.36+0.288=0.648=64.8%。故选D。25、1,6,36,216,()
A、1296
B、1297
C、1299
D、1230
【答案】:答案:A
解析:数列是公比为6的等比数列,则所求项为216×6=1296(也可用尾数法,尾数为6)。故选A。26、2.08,8.16,24.32,64.64,()
A、160.28
B、124.28
C、160.56
D、124.56
【答案】:答案:A
解析:小数点之前满足规律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D两项。小数点之后构成等比数列8,16,32,64,128,小数点之后的数超过三位取后两位,所以未知项是160.28。故选A。27、把一根钢管锯成5段需要8分钟,如果把同样的钢管锯成20段需要多少分钟?()
A、32分钟
B、38分钟
C、40分钟
D、152分钟
【答案】:答案:B
解析:把一根钢管锯成5段需要锯4次,所以每锯一次需要8÷4=2(分钟)。则锯20段需要锯19次,所需的时间为19×2=38(分钟)。故选B。28、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故选C。29、甲、乙、丙三辆汽车分别从A地开往千里之外的B地。若乙比甲晚出发30分钟,则乙出发后2小时追上甲;若丙比乙晚出发20分钟,则丙出发后5小时追上乙。若甲出发10分钟后乙出发,当乙追上甲时,丙才出发,则丙追上甲所需时间是()。
A、110分钟
B、150分钟
C、127分钟
D、128分钟
【答案】:答案:B
解析:设甲、乙、丙三辆汽车的速度分别为x、y、z。由于甲行驶30分钟的路程,乙需要2小时才能追上,则30x=(y-x)×2×60,化简得x∶y=4∶5。又因乙行驶20分钟的路程,丙需要5小时才能追上,则20y=(z-y)×5×60,化简得y∶z=15∶16。所以三辆汽车的速度x∶y∶z=12∶15∶16。赋值甲、乙、丙的速度分别为12、15、16,甲出发10分钟后乙出发,则乙追上甲的时间为(分钟),故丙出发时甲已经行驶10+40=50(分钟),设丙追上甲所需时间是t分钟,可得方程12×50=(16-12)×t,解得t=150。故选B。30、在某城市中,有60%的家庭订阅某种日报,有85%的家庭有电视机。假定这两个事件是独立的,今随机抽出一个家庭,所抽家庭既订阅该种日报又有电视机的概率是()。
A、0.09
B、0.25
C、0.36
D、0.51
【答案】:答案:D
解析:由于是独立重复试验,故既订阅该中日报又有电视机的概率是60%×85%=51%。故选D。31、84,12,48,30,39,()
A、23
B、36.5
C、34.5
D、43
【答案】:答案:C
解析:依次将相邻两个数中前一个数减去后一个数得72,-36,18,-9,构成公比为-0.5的等比数列,即所填数字为39-4.5=34.5。故选C。32、8,10,14,18,()
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故选C。33、A、B、C三个试管中各盛有10克、20克、30克水,把某种浓度的盐水10克倒入A中,充分混合后从A中取出10克倒入B中,再充分混合后从B中取出10克倒入C中,最后得到C中盐水的浓度为0.5%。则开始倒入试管A中的盐水浓度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含盐量为(30+10)×0.5%=0.2克,即从B中取出的10克中含盐0.2克,则B的浓度为0.2÷10=2%,进而求出B中含盐量为(20+10)×2%=0.6克,即从A中取出的10克中含盐0.6克,可得A的浓度为0.6÷10=6%,进一步得出A中含盐量为(10+10)×6%=1.2克,故开始倒入A中的盐水浓度为1.2÷10=12%。故选A。34、2,3,6,18,108,()
A、1944
B、1620
C、1296
D、1728
【答案】:答案:A
解析:2×3=6,3×6=18,6×18=108,……前两项相乘等于下一项,则所求项为18×108,尾数为4。故选A。35、7,21,14,21,63,(),63
A、35
B、42
C、40
D、56
【答案】:答案:B
解析:三个一组,7、21、14中第二个数是第一个数和第三个数的和,即所填数字为63-21=42。故选B。36、1,2,3,6,12,24,()
A、48
B、45
C、36
D、32
【答案】:答案:A
解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N项=第N-1项+…+第一项,即所填数字为1+2+3+6+12+24=48。故选A。37、商店购入一百多件A款服装,其单件进价为整数元,总进价为1万元,已知单件B款服装的定价为其进价的1.6倍,其进价为A款服装的75%,销售每件B款服装的利润为A款服装的一半,某日商店以定价销售A款服装的总销售额超过2500元,问当天至少销售了多少件A款服装?()
A、13
B、15
C、17
D、19
【答案】:答案:C
解析:推出A款服装有125件,进价为80元,B款服装进价为80×0.75=60(元),B款服装定价为60×1.6=96(元),利润为96-60=36(元),A款服装利润为36×2=72(元),所以A款服装售价为80+72=152(元)。销售数量至少为2500÷152=16.4,取整为17件。故选C。38、3,4,10,33,136,()
A、685
B、424
C、314
D、149
【答案】:答案:A
解析:4=(3+1)×1,10=(4+1)×2,33=(10+1)×3,136=(33+1)×4,an=(an-1+1)×(n-1)(n≥2),即所填数字应为(136+1)×5=685。故选A。39、某种细胞开始时有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个……按此规律,6小时后细胞存活的个数有多少?()
A、63
B、65
C、67
D、71
【答案】:答案:B
解析:1小时后细胞存活的个数为2×2-1=3;2小时后为2×3-1=5;3小时后为2×5-1=9……按此规律,n小时后细胞存活的个数为。故6小时后细胞存活的个数是(个)。故选B。40、2,3,7,22,155,()
A、2901
B、3151
C、3281
D、3411
【答案】:答案:D
解析:7=3×2+1,22=7×3+1,155=22×7+1,即所填数字为22×155+1=3411。故选D。41、8,10,14,18,()
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故选C。42、小王登山,上山的速度是4km/h,到达山顶后原路返回,速度为6km/h,设山路长为9km,小王的平均速度为()km/h。
A、5
B、4.8
C、4.6
D、4.4
【答案】:答案:B
解析:平均速度为总路程除以总时间,即(2×9)÷(9÷4+9÷6)=4.8km/h。故选B。43、甲和乙两个公司2014年的营业额相同。2015年乙公司受店铺改造工程影响,营业额比上年下降300万元。而甲公司则引入电商业务,营业额比上年增长600万元,正好是乙公司2015年营业额的3倍。则2014年两家公司的营业额之和为多少万元?()
A.900
B.1200
C.1500
D.1800
【答案】:答案:C
解析:设2014年两家公司营业额为x万元,由题意可得万元,则2014年两家公司营业额为故正确答案为C。44、0,6,24,60,()
A、70
B、80
C、100
D、120
【答案】:答案:D
解析:0=0×1×2,6=1×2×3,24=2×3×4,60=3×4×5,()=4×5×6=120。另解,0=13-1,6=23-2,24=33-3,60=43-4,()=53-5=120。故选D。45、44,52,59,73,83,94,()
A、107
B、101
C、105
D、113
【答案】:答案:A
解析:每相邻的两项作差,得到8,7,14,10,11,每一个差是原数列中前一项个位数与十位数字的和,即8=4+4,7=5+2,14=5+9,10=7+3,11=8+3,所以9+4=13,所以未知项为13+94=107。故选A。46、[(9,6)42(7,7)][(7,3)40(6,4)][(8,2)()(3,2)]
A、30
B、32
C、34
D、36
【答案】:答案:A
解析:(9-6)×(7+7)=42,(7-3)×(6+4)=40,(8-2)×(3+2)=(30)。故选A。47、118,199,226,(),238
A、228
B、230
C、232
D、235
【答案】:答案:D
解析:相邻两项后一项减前一项,199-118=81,226-199=27,235-226=9,238-235=3,是公比为的等比数列,即所填数字为238-3=226+9=235。故选D。48、(1296-18)÷36的值是()。
A、20
B、35.5
C、19
D、36
【答案】:答案:B
解析:原式可转化为1296÷36-18÷36=36-0.5=35.5。故选B。49、某木场有甲,乙,丙三位木匠师傅生产桌椅,甲每天能生产12张书桌或13把椅子;乙每天能生产9张书桌或12把椅子,丙每天能生产9张书桌或15把椅子,现在书桌和椅子要配套生产(每套一张书桌一把椅子),则7天内这三位师傅最多可以生产桌椅()套。
A、116
B、129
C、132
D、142
【答案】:答案:B
解析:将甲、乙、丙三位木匠师傅生产桌椅的效率列表如下,分析可知,甲生产书桌的相对效率最高,丙生产椅子的相对效率最高,则安排甲7天全部生产书桌,丙7天全部生产椅子,乙协助甲丙完成。甲7天可生产桌子12×7=84(张),丙7天可生产椅子15×7=105(把)。设乙生产书桌x天,则生产椅子(7-x)天,当生产的书桌数与椅子数相同时,获得套数最多,可列方程84+9x=105+12×(7-x),解得x=5,则乙可生产书桌9×5=45(张)。故7天内这三位师傅最多可以生产桌椅84+45=129(套)。故选B。50、祖父今年65岁,3个孙子的年龄分别是15岁、13岁与9岁,问多少年后3个孙子的年龄之和等于祖父的年龄?()
A、23
B、14
C、25
D、16
【答案】:答案:B
解析:设n年后3个孙子的年龄之和等于祖父的年龄,可列方程:65+n=(15+n)+(13+n)+(9+n),解得n=14。故选B。51、1,8,9,4,(),1/6
A、3
B、2
C、1
D、1/3
【答案】:答案:C
解析:1=14,8=23,9=32,4=41,1=50,1/6=6(-1)。故选C。52、三位评委为12名选手投票,每位评委分别都投出了7票,并且每位选手都有评委投票。得三票的选手直接晋级,得两票的选手待定,得一票或无票的直接淘汰,则下列说法正确的是()。
A、晋级和待定的选手共6人
B、待定和淘汰的选手共7人
C、晋级的选手最多有5人
D、晋级比淘汰的选手少3人
【答案】:答案:D
解析:每位评委投了7票,那么这三位评委的选择各包含了7位选手,画出如下文氏图。黑色部分代表三位评委都投票的选手,即晋级选手,记为A。阴影部分代表有两位评委投票的选手,即待定选手,记为B。白色部分代表至多有一位评委投票的选手,即淘汰选手,记为C。D项正确,由容斥原理可知,A+B+C=12,(7+7+7)-B-2A=12,得到B+2A=9,C-A=3,即晋级选手比淘汰选手少3人。方法二:设晋级、待定、淘汰的数量分别为a、b、c,则a+b+c=12,3a+2b+c=3×7=21,得2a+b=9。A项错误,当a+b=6时,a=-1不成立。B项错误,b+c=7,则a=12-7=5,b=5-2×3=-1不可能;C项错误,a=5时,b=-1不可能;D项正确,c-a=3时,得2a+b=9成立。故选D。53、2.08,8.16,24.32,64.64,()
A、160.28
B、124.28
C、160.56
D、124.56
【答案】:答案:A
解析:小数点之前满足规律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D两项。小数点之后构成等比数列8,16,32,64,128,小数点之后的数超过三位取后两位,所以未知项是160.28。故选A。54、6,21,43,72,()
A、84
B、96
C、108
D、112
【答案】:答案:C
解析:依次将相邻两个数中后一个数减去前一个数得15,22,29,构成公差为7的等差数列,即所填数字为72+29+7=108。故选C。55、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多少?()
A、256
B、486
C、556
D、376
【答案】:答案:B
解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不如将它换成2个3。因为2×2×2=8,而3×3=9。故拆分出的自然数中,至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为243×2=486。故选B。56、8,4,8,10,14,()
A、22
B、20
C、19
D、24
【答案】:答案:C
解析:题干数列为递推数列,规律为:8÷2+4=8,4÷2+8=10,8÷2+10=14,即第一项÷2+第二项=第三项,因此未知项为10÷2+14=19。故选C。57、a除以5余1,b除以5余4,如果3a>b,那么3a-b除以5余几?()
A、1
B、2
C、3
D、4
【答案】:答案:D
解析:a除以5余1,假设a=6;b除以5余4,假设b=9,符合3a>b。故3a-b=18-9=9,9除以5余4。故选D。58、2,7,14,21,294,()
A、28
B、35
C、273
D、315
【答案】:答案:D
解析:21=7+14,14=2×7,294=14×21,为两项相加、相乘交替得到后-项,即所填数字为21+294=315。故选D。59、某单位组织工会活动,30名员工自愿参加做游戏。游戏规则:按1~30号编号并报数,第一次报数后,单号全部站出来,然后每次余下的人中第一个开始站出来,隔一人站出来一个人。最后站出来的人给大家唱首歌。那么给大家唱歌的员工编号是()。
A、14
B、16
C、18
D、20
【答案】:答案:B
解析:第一次报数后,单号全部站出来,剩余号码为2、4、6、8、10······30,均为2的倍数;每次余下的人中第一个开始站出来,隔一人站出来一个人,剩余号码为4、8、12、16、20、24、28,均为4的倍数;再从余下的号码中第一个人开始站出来,隔一个人站出来一个人,剩余号码为8、16、24,均为8的倍数;重复上一次的步骤,剩余16号,为16的倍数。1—30中16的倍数只有16。故选B。60、从A地到B地为上坡路。自行车选手从A地出发按A-B-A-B的路线行进,全程平均速度为从B地出发,按B-A-B-A的路线行进的全程平均速度的4/5,如自行车选手在上坡路与下坡路上分别以固定速度匀速骑行,问他上坡的速度是下坡速度的()。
A、1/2
B、1/3
C、2/3
D、3/5
【答案】:答案:A
解析:S=VT,当S一定的时候,VT成反比,两次行程的平均速度之比是4:5,故两次行程所用时间之比T1:T2=5:4。设一个下坡的时间是1,一个上坡的时间是n,则上坡速度是下坡速度的1/n。A-B-A-B的过程经历了2个上坡和1个下坡,则T1=2n+1;B-A-B-A的过程经历了2个下坡和1个上坡,则T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故选A。61、2,7,13,20,25,31,()
A、35
B、36
C、37
D、38
【答案】:答案:D
解析:依次将相邻两个数中后一个数减去前一个数得5,6,7,5,6,为(5,6,7)三个数字组成的循环数列,即所填数字为31+7=38。故选D。62、调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?()
A、101
B、175
C、188
D、200
【答案】:答案:C
解析:在435份调查问卷中有435×20%=87份没有写手机号;且手机号码后两位可能出现的情况一共10×10=100种,因此要保证一定能找到两个手机号码后两位相同的被调查者,至少需要抽取87+100+1=188份。故选C。63、8,4,8,10,14,()
A、22
B、20
C、19
D、24
【答案】:答案:C
解析:题干数列为递推数列,规律为:8÷2+4=8,4÷2+8=10,8÷2+10=14,即第一项÷2+第二项=第三项,因此未知项为10÷2+14=19。故选C。64、44,52,59,73,83,94,()
A、107
B、101
C、105
D、113
【答案】:答案:A
解析:每相邻的两项作差,得到8,7,14,10,11,每一个差是原数列中前一项个位数与十位数字的和,即8=4+4,7=5+2,14=5+9,10=7+3,11=8+3,所以9+4=13,所以未知项为13+94=107。故选A。65、33.1,88.1,47.1,()
A、29.3
B、34.5
C、16.1
D、28.9
【答案】:答案:C
解析:小数点左边:33、88、47、16成奇、偶、奇、偶的规律,小数点右边:1、1、1、1等差。故选C。66、1,2,9,64,()
A、250
B、425
C、625
D、650
【答案】:答案:C
解析:10,21,32,43,(54)=625。故选C。67、张大伯卖白菜,开始定价是每千克5角钱,一点都卖不出去,后来每千克降低了几分钱,全部白菜很快卖了出去,一共收入22.26元,则每千克降低了几分钱?
A、3
B、4
C、6
D、8
【答案】:答案:D
解析:代入法,只有降8分时收入才能被价格整除。(2226=2×3×7×53=42×53)。故选D。68、A、B、C三个试管中各盛有10克、20克、30克水,把某种浓度的盐水10克倒入A中,充分混合后从A中取出10克倒入B中,再充分混合后从B中取出10克倒入C中,最后得到C中盐水的浓度为0.5%。则开始倒入试管A中的盐水浓度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含盐量为(30+10)×0.5%=0.2克,即从B中取出的10克中含盐0.2克,则B的浓度为0.2÷10=2%,进而求出B中含盐量为(20+10)×2%=0.6克,即从A中取出的10克中含盐0.6克,可得A的浓度为0.6÷10=6%,进一步得出A中含盐量为(10+10)×6%=1.2克,故开始倒入A中的盐水浓度为1.2÷10=12%。故选A。69、7,9,-1,5,()
A、3
B、-3
C、2
D、-2
【答案】:答案:B
解析:第三项=(第一项-第二项)/2=>-1=(7-9)/25=(9-(-1))/2-3=(-1-5)/2。故选B。70、1,1,3,7,17,41,()
A、89
B、99
C、109
D、119
【答案】:答案:B
解析:第三项=第二项×2+第一项,99=41×2+17。故选B。71、145,120,101,80,65,()
A、48
B、49
C、50
D、51
【答案】:答案:A
解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇数项,每项等于首项为12,公差为-2的平方加1;偶数项,每项等于首项为11,公差为-2的平方减1,即所填数字为72-1=48。故选A。72、3,2,2,5,17,()
A、24
B、36
C、44
D、56
【答案】:答案:D
解析:依次将相邻两个数中后一个数减去前一个数得-1,0,3,12,再次作差得1,3,9,构成公比为3的等比数列,即所填数字为9×3+12+17=56。故选D。73、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?()
A、17.25
B、21
C、21.33
D、24
【答案】:答案:B
解析:总费用一定,要使两个月的用水总量最多,需尽量使用低价水。先将两个月4元/吨的额度用完,花费4×5×2=40(元);再将6元/吨的额度用完,花费6×5×2=60(元)。由两个月共交水费108元可知,还剩108-40-60=8(元),可购买1吨单价为8元/吨的水。该户居民这两个月用水总量最多为5×2+5×2+1=21(吨)。故选B。74、44,52,59,73,83,94,()
A、107
B、101
C、105
D、113
【答案】:答案:A
解析:每相邻的两项作差,得到8,7,14,10,11,每一个差是原数列中前一项个位数与十位数字的和,即8=4+4,7=5+2,14=5+9,10=7+3,11=8+3,所以9+4=13,所以未知项为13+94=107。故选A。75、有4堆木材,都堆成正三角形垛,层数分别为5,6,7,8层,那么共有木材()根。
A、110
B、100
C、120
D、130
【答案】:答案:B
解析:5层木材有1+2+3+4+5=15,6层木材有1+2+3+4+5+6=21,7层木材有1+2+3+4+5+6+7=28,8层木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故选B。76、187,259,448,583,754,()
A、847
B、862
C、915
D、944
【答案】:答案:B
解析:各项数字和均为16。故选B。77、某人租下一店面准备卖服装,房租每月1万元,重新装修花费10万元。从租下店面到开始营业花费3个月时间。开始营业后第一个月,扣除所有费用后的纯利润为3万元。如每月纯利润都比上月增加2000元而成本不变,问该店在租下店面后第几个月内收回投资?()
A、7
B、8
C、9
D、10
【答案】:答案:A
解析:由题意可得租下店面前3个月成本为1×3+10=13(万元),租下店面第4个月开始营业,营业后各月获得的纯利润构成首项为3万元、公差为0.2万元的等差数列:3万元、3.2万元、3.4万元、3.6万元。由3+3.2+3.4+3.6=13.2>13,即第7个月收回投资。故选A。78、某一学校有500人,其中选修数学的有359人,选修文学的有408人,那么两种课程都选的学生至少有多少?()
A、165人
B、203人
C、267人
D、199人
【答案】:答案:C
解析:设至少有x人两种课程都选,则359-x+408-x+x≤500,解得x≥267,则两种课程都选的学生至少有267人。故选C。79、1,2,3,6,12,()
A、16
B、20
C、24
D、36
【答案】:答案:C
解析:分3组=>(1,2),(3,6),(12,24)=>每组后项除以前项=>2、2、2。故选C。80、2,1,2/3,1/2,()
A、3/4
B、1/4
C、2/5
D、5/6
【答案】:答案:C
解析:数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5。故选C。81、某楼盘的地下停车位,第一次开盘时平均价格为15万元/个;第二次开盘时,车位的销售量增加了一倍、销售额增加了60%。那么,第二次开盘的车位平均价格为()。
A、10万元/个
B、11万元/个
C、12万元/个
D、13万元/个
【答案】:答案:C
解析:销售额=平均价格×销售量,已知第一次开盘平均价格为15万元/个,赋销售量为1,则销售额为15万。第二次开盘时,销售量增加了一倍,即为2,销售额增加了60%,得销售额为15×(1+60%)=24(万元),故第二次开盘平均价格为24÷2=12(万元/个)。故选C。82、有苹果若干个,若把其换成桔子,则多换5个;若把其换成菠萝,则少掉7个,已知每个桔子4角9分钱,每个菠萝7角钱,每个苹果的单价是多少?()
A、5角
B、5角8分
C、5角6分
D、5角4分
【答案】:答案:C
解析:此题可理解为:把苹果全部卖掉,得到钱若干,若用这些钱买成同样数量的桔子,则剩下49×5=245分,若用这些钱买成同样数量的菠萝,则缺少70×7=490分,所以苹果个数=(245+490)÷(70-49)=35个,苹果总价=49×35+49×5=1960分,每个苹果单价=1960÷35=56分=5角6分。故选C。83、某快速反应部队运送救灾物资到灾区。飞机原计划每分钟飞行12千米,由于灾情危急,飞行速度提高到每分钟15千米,结果比原计划提前30分钟到达灾区,则机场到灾区的距离是多少千米?()
A、1600
B、1800
C、2050
D、2250
【答案】:答案:B
解析:设机场到灾区的距离为x,由每分钟飞行12千米可知,原飞行时间为;由每分钟15千米可知,现飞行时间为。根据比原计划提前30分钟,可得,解得x=1800(千米)。故选B。84、接受采访的100个大学生中,88人有手机,76人有电脑,其中有手机没电脑的共15人,则这100个学生中有电脑但没手机的共有多少人?()
A、25
B、15
C、5
D、3
【答案】:答案:D
解析:根据有手机没电脑共15人,可得既有手机又有电脑(①部分)的人数为88-15=73人,则有电脑但没手机(②部分)的人数为76-73=3人。故选D。85、办公室小李发现写字台上的台历很久没有翻了,就一次翻了7张,这些台历的日期数加起来恰好是77,请问这一天是几号?()
A、14
B、15
C、16
D、17
【答案】:答案:B
解析:翻过去的7天的日期是公差为1的等差数列,和是77,根据等差数列求和公式,可知中位数=77÷7=11,7天中位数是第4天即第4天为11号。第七天是11+(7-4)×1=14号,可知今天是15号。故选B。86、在某城市中,有60%的家庭订阅某种日报,有85%的家庭有电视机。假定这两个事件是独立的,今随机抽出一个家庭,所抽家庭既订阅该种日报又有电视机的概率是()。
A、0.09
B、0.25
C、0.36
D、0.51
【答案】:答案:D
解析:由于是独立重复试验,故既订阅该中日报又有电视机的概率是60%×85%=51%。故选D。87、某收藏家有三个古董钟,时针都掉了,只剩下分针,而且都走得较快,每小时分别快2分钟、6分钟及12分钟。如果在中午将这三个钟的分针都调整指向钟面的12点位置,多少小时后这3个钟的分针会指在相同的分钟位置?
A.24
B.26
C.28
D.30
【答案】:答案:D
解析:由题意可得:假设每小时快2分钟、快6分钟、快12分钟的古董钟分别为A钟、B钟、C钟,则B钟与A钟速度差为分钟/小时,已知整个钟盘有60分钟,即经过小时,B钟的分针比A钟的分针恰好多走一圈,且此时两钟分针重合,同理,C钟与A钟速度差为分钟/小时,即经过小时,C钟的分针比A钟的分针恰好多走一圈,此时两钟分针重合,取6和15的最小公倍数30,即经过30小时,B钟的分针比A钟的分针恰好多走2圈,C钟的分针比A钟的分针恰好多走5圈,且此时三个分针处于同一个位置。故正确答案为D。88、7.1,8.6,14.2,16.12,28.4,()
A、32.24
B、30.4
C、32.4
D、30.24
【答案】:答案:A
解析:奇数项依次为:7.1、14.2、28.4,是公比为2的等比数列;偶数项依次为:8.6、16.12,是公比为2的等比数列,即所填数字为16.12×2=32.24。故选A。89、一旅行团共有50位游客到某地旅游,去A景点的游客有35位,去B景点的游客有32位,去C景点的游客有27位,去A、B景点的游客有20位,去B、C景点的游客有15位,三个景点都去的游客有8位,有2位游客去完一个景点后先行离团,还有1位游客三个景点都没去。那么,50位游客中有多少位恰好去了两个景点?()
A、29
B、31
C、35
D、37
【答案】:答案:A
解析:设去两个景点的人数为y,根据三集合非标准型公式可得:35+32+27-y-2×8=50-1,解得y=29。故选A。90、假设地球上新生成的资源的增长速度是一定的,照此推算,地球上的资源可供110亿人生活90年,或者可供90亿人生活210年。为了使人类能够不断繁衍,那么地球最多能养活多少亿人?()
A、70
B、75
C、80
D、100
【答案】:答案:B
解析:设地球的原始资源可供x亿人生存一年,每年增长的资源可供y亿人生存一年,即x+90y=90×110,x+210y=210×90,两式联立得y=75,为了使人类能够不断繁衍,那么地球最多能养活75亿人。故选B。91、玉米的正常市场价格为每公斤1.86元到2.18元,近期某地玉米价格涨至每公斤2.68元。经测算,向市场每投放储备玉米100吨,每公斤玉米价格下降0.05元。为稳定玉米价格,向该地投放储备玉米的数量不能超过()。
A、800吨
B、1080吨
C、1360吨
D、1640吨
【答案】:答案:D
解析:要稳定玉米价格,玉米的价格必须调整至正常区间。所以最低下降为每公斤1.86元,即下降了2.68-1.86=0.82(元)。因为每投放100吨,价格下降0.05元,所以投放玉米的数量不能超过0.82÷0.05×100=1640(吨)。故选D。92、某木场有甲,乙,丙三位木匠师傅生产桌椅,甲每天能生产12张书桌或13把椅子;乙每天能生产9张书桌或12把椅子,丙每天能生产9张书桌或15把椅子,现在书桌和椅子要配套生产(每套一张书桌一把椅子),则7天内这三位师傅最多可以生产桌椅()套。
A、116
B、129
C、132
D、142
【答案】:答案:B
解析:将甲、乙、丙三位木匠师傅生产桌椅的效率列表如下,分析可知,甲生产书桌的相对效率最高,丙生产椅子的相对效率最高,则安排甲7天全部生产书桌,丙7天全部生产椅子,乙协助甲丙完成。甲7天可生产桌子12×7=84(张),丙7天可生产椅子15×7=105(把)。设乙生产书桌x天,则生产椅子(7-x)天,当生产的书桌数与椅子数相同时,获得套数最多,可列方程84+9x=105+12×(7-x),解得x=5,则乙可生产书桌9×5=45(张)。故7天内这三位师傅最多可以生产桌椅84+45=129(套)。故选B。93、有苹果若干个,若把其换成桔子,则多换5个;若把其换成菠萝,则少掉7个,已知每个桔子4角9分钱,每个菠萝7角钱,每个苹果的单价是多少?()
A、5角
B、5角8分
C、5角6分
D、5角4分
【答案】:答案:C
解析:此题可理解为:把苹果全部卖掉,得到钱若干,若用这些钱买成同样数量的桔子,则剩下49×5=245分,若用这些钱买成同样数量的菠萝,则缺少70×7=490分,所以苹果个数=(245+490)÷(70-49)=35个,苹果总价=49×35+49×5=1960分,每个苹果单价=1960÷35=56分=5角6分。故选C。94、3,-6,12,-24,()
A、42
B、44
C、46
D、48
【答案】:答案:D
解析:公比为-2的等比数列。故选D。95、某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少生产100套;如果每天生产23套服装,就可超过订货任务20套。那么,这批服装的订货任务是多少套?()
A、760
B、1120
C、900
D、850
【答案】:答案:C
解析:由题意每天生产多出3套,总共就会多生产出120,那么计划的天数为40天,所以这批服装为20×40+100=900(套)。故选C。96、某旅游部门规划一条从甲景点到乙景点的旅游线路,经测试,旅游船从甲到乙顺水匀速行驶需3小时;从乙返回甲逆水匀速行驶需4小时。假设水流速度恒定,甲乙之间的距离为y公里,旅游船在静水中匀速行驶y公里需要x小时,则x满足的方程为()。
A、1/3-1/x=1/x-1/4
B、1/3-1/x=1/4+1/x
C、1/(x+3)=1/4-1/x
D、1/(4-x)=1/x+1/3
【答案】:答案:A
解析:由题意可知,旅游船的静水速度为y/x公里/时,顺水速度为y/3公里/时,逆水速度为y/4公里/时。由水速=水速度-静水速度=静水速度-逆水速度,我们可得:y/3-y/x=y/x-y/4,消去y,得:1/3-1/x=1/x-1/4,故选A。考点点拨:解决流水问题的关键在于找出船速、水速、顺水速度和逆水速度四个量,然后根据其之间的关系求出未知量。故选A。97、张老师家四代同堂,且从父亲、张老师、儿子到孙子,每两代人的年龄差相同。5年前张老师父亲的年龄是儿子的3倍,8年后张老师的年龄是孙子的5倍。问今年四个人的年龄之和为()。
A、168岁
B、172岁
C、176岁
D、180岁
【答案】:答案:C
解析:父亲、张老师、儿子、孙子每两代人年龄差相同,设此年龄差为d,则父亲为(儿+2d),张老师为 (儿+d),孙子为(儿-d),因此四人年龄总和为(4儿+2d)。由5年前张老师父亲年龄是儿子的3倍即比儿子大2倍,即2d=2(儿-5)①;由8年后张老师年龄是孙子的5倍即比孙子大4倍即2d=4(儿-d+8)②;由①②可得儿=31,d=26,因此四人年龄总和为4儿+2d=4×31+2×26=176(岁)。故选C。98、某商店以5元/斤的价格购入一批蔬菜,上午以8元/斤的价格卖出总进货量的60%,中午以上午售出价的8折卖出总进货量的20%,下午以中午售出价的一半卖出剩余货量的一半,最后获利210元。则该商店一共购入多少斤蔬菜?()
A、140
B、150
C、160
D、180
【答案】:答案:B
解析:赋值购进的量为10斤,上午以8元/斤的价格卖出6斤,中午以6.4元/斤的价格卖出2斤,下午以3.2元/斤的价格卖出1斤,总收入=8×6+6.4×2+3.2×1=64元,总利润=64-5×10=14元,实际购入(210/14)×10=150斤。故选B。99、某饮料店有纯果汁(即浓度为100%)10千克,浓度为30%的浓缩还原果汁20千克。若取纯果汁、浓缩还原果汁各10千克倒入10千克纯净水中,再倒入10千克的浓缩还原果汁,则得到的果汁浓度为多少。()
A、40%
B、37.5%
C、35%
D、30%
【答案】:答案:A
解析:根据题干可得,一共倒入纯果汁(即浓度为100%)10千克,纯净水10千克,浓度为30%的浓缩还原果汁20千克。可知最终溶液的量为10+10+20=40(千克),最终溶质为10+20×30%=16(千克)。则最终果汁浓度=16÷40×100%=40%。故选A。100、甲、乙两人在一条400米的环形跑道上从相距200米的位置出发,同向匀速跑步。当甲第三次追上乙的时候,乙跑了2000米。问甲的速度是乙的多少倍?()
A、1.2
B、1.5
C、1.6
D、2.0
【答案】:答案:B
解析:环形同点同向出发每追上一次,甲比乙多跑一圈。第一次由于是不同起点,甲比乙多跑原来的差距200米;之后两次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,时间相同,则速度比与路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故选B。101、当含盐30%的60千克盐水蒸发为含盐40%的盐水时,盐水重量为多少千克?()
A、45
B、50
C、55
D、60
【答案】:答案:A
解析:设蒸发后盐水质量为x千克,由盐水中盐的质量不变可得,60×30%=40%x,解得x=45。故选A。102、甲乙两船从相距50千米的地方起航,船速不变。两船在逆水中航行,甲航行100千米恰好赶上乙;如果两船在顺水中航行,那么甲追上乙需航行多远?()
A、500千米
B、100~500千米
C、100千米
D、大于100千米
【答案】:答案:D
解析:不管是顺水还是逆水,水速对两船的影响是一样的,影响追及时间产生的仅为两船船速之差。因此无论逆水还是顺水,追及时间相同,逆水时甲船追上乙船需航行100千米,而顺水航行时速度大于逆水时的速度,航行距离应大于100千米。故选D。103、-7,0,1,2,9,()
A、42
B、18
C、24
D、28
【答案】:答案:D
解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1。故选D。104、甲、乙、丙三辆汽车分别从A地开往千里之外的B地。若乙比甲晚出发30分钟,则乙出发后2小时追上甲;若丙比乙晚出发20分钟,则丙出发后5小时追上乙。若甲出发10分钟后乙出发,当乙追上甲时,丙才出发,则丙追上甲所需时间是()。
A、110分钟
B、150分钟
C、127分钟
D、128分钟
【答案】:答案:B
解析:设甲、乙、丙三辆汽车的速度分别为x、y、z。由于甲行驶30分钟的路程,乙需要2小时才能追上,则30x=(y-x)×2×60,化简得x∶y=4∶5。又因乙行驶20分钟的路程,丙需要5小时才能追上,则20y=(z-y)×5×60,化简得y∶z=15∶16。所以三辆汽车的速度x∶y∶z=12∶15∶16。赋值甲、乙、丙的速度分别为12、15、16,甲出发10分钟后乙出发,则乙追上甲的时间为(分钟),故丙出发时甲已经行驶10+40=50(分钟),设丙追上甲所需时间是t分钟,可得方程12×50=(16-12)×t,解得t=150。故选B。105、某年的10月里有5个星期六,4个星期日,则这年的10月1日是?()
A、星期一
B、星期二
C、星期三
D、星期四
【答案】:答案:D
解析:10月有31天,因为有5个星期六,4个星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故选D。106、1,2,0,3,-1,4,()
A、-2
B、0
C、5
D、6
【答案】:答案:A
解析:奇数项1、0、-1、(-2)是公差为-1的等差数列;偶数项2、3、4是连续自然数。故选A。107、有一只青蛙在井底,每天上爬10米,又下滑6米,这口井深20米,这只青蛙爬出井口至少需要多少天?()
A、2
B、3
C、4
D、5
【答案】:答案:C
解析:第一天青蛙爬了10-6=4米,距离井口20-4=16米;第二天爬了4+(10-6)=8米,距离井口20-8=12米;第三天爬了8+(10-6)=12米,距离井口20-12=8米<10米;第四天青蛙可以直接爬出井口。这只青蛙爬出井口至少要4天。故选C。108、2,3,10,23,()
A、35
B、42
C、68
D、79
【答案】:答案:B
解析:相邻两项后一项减前一项,3-2=1,10-3=7,13-10=13,42-23=19,是一个公差为6的等差数列,即所填数字为23+19=42。故选B。109、某机构调查居民订阅报纸的情况,发现30%的家庭订阅了日报,35%的家庭订阅了早报,45%的家庭订阅了晚报,10%的家庭没有订阅任何一种报纸,若每个家庭都不会同时订早报和晚报,则同时订阅日报和早报的家庭的比例在多少范围之内?()
A、0~10%
B、10%~20%
C、0~20%
D、20%~30%
【答案】:答案:C
解析:根据“都不会同时订阅”可知,同时订三种报纸的为0。设同时订阅日报和早报的为x,同时订阅日报和晚报的为y。根据三集合容斥原理得:100%=30%+35%+45%-x-y-0+0+10%,解得x+y=20%。因此x在0~20%之间。故选C。110、97,95,92,87,()
A、81
B、79
C、74
D、66
【答案】:答案:B
解析:97+(-2)=95,95+(-3)=92,92+(-5)=87,数列中两项之差形成的数列为-2,-3,-5,而(-2)+(-3)=(-5),后一项为前两项之和,下一个数为(-3)+(-5)=(-8),即所填数字为87+(-8)=79。故选B。111、12,23,34,45,56,()
A、66
B、67
C、68
D、69
【答案】:答案:B
解析:依次将相邻两个数中后一个数减去前一个数,构成公差为11的等差数列,即所填的数字为56+11=67。故选B。112、-1,6,25,62,()
A、123
B、87
C、150
D、109
【答案】:答案:A
解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故选A。113、10,9,17,50,()
A、100
B、99
C、199
D、200
【答案】:答案:C
解析:10×1-1=9;9×2-1=17;17×3-1=50;50×4-1=199。故选C。114、1,6,36,216,()
A、1296
B、1297
C、1299
D、1230
【答案】:答案:A
解析:公比为6的等比数列。故选A。115、某水库共有10个泄洪闸,当10个泄洪闸全部打开时,8小时可将水位由警戒水位降至安全水位;只打开6个泄洪闸时,这个过程为24个小时,如水库每小时的入库量稳定,问如果打开8个泄洪闸时,需要多少小时可将水位降至安全水位?()
A、10
B、12
C、14
D、16
【答案】:答案:B
解析:设水库每小时的入库量为x。根据题意可列方程(10-x)8=(6-x)24,解得x=4,故水库警戒水位至安全水位的容量为(10-4)×8=48;设打开8个泄洪闸需t小时可将水位降至安全水位;则48=(8-4)t,解得t=12。故选B。116、2,5,9,19,37,75,()
A、140
B、142
C、146
D、149
【答案】:答案:C
解析:方法一:2×2+1=5,5×2-1=9,9×2+1=19,19×2-1=37,37×2+1=75,奇数项,每项乘以2加上1等于后一项;偶数项,每项乘以2减去1等于后一项,即所填数字为75×2-1=149。方法二:2×2+5=9,5×2+9=19,9×2+19=37,19×2+37=75,第三项=第一项×2+第二项,即所填数字为37×2+75=149。故选C。117、2,6,13,39,15,45,23,()
A、46
B、66
C、68
D、69
【答案】:答案:D
解析:6=2×3,39=13×3,45=15×3。两个数为一组,每组中的第二个数是第一个数的三倍,即所填数字为23×3=69。故选D。118、13,14,16,21,(),76
A、23
B、35
C、27
D、22
【答案】:答案:B
解析:相连两项相减:1,2,5,();再减一次:1,3,9,27;()=14;21+14=35。故选B。119、4,8,28,216,()
A、6020
B、2160
C、4200
D、4124
【答案】:答案:A
解析:4×(8-1)=28,8×(28-1)=216,即所填数字为28×(216-1)=6020。故选A。120、-1,3,-3,-3,-9,()
A、-9
B、-4
C、-14
D、-45
【答案】:答案:D
解析:题干倍数关系明显,考虑作商。后项除以前项得到新数列:-3、-1、1、3,新数列为公差是2的等差数列,则新数列的下一项应为5,所求项为:-9×5=-45。故选D。121、甲乙两车早上分别同时从A、B两地出发驶向对方所在城市,在分别到达对方城市并各自花费1小时卸货后,立刻出发以原速返回出发地。甲车的速度为60千米/小时,乙车的速度为40千米/小时,两地之间相距480千米。问两车第二次相遇距离两车早上出发经过了多少个小时?()
A、13.4
B、14.4
C、15.4
D、16.4
【答案】:答案:C
解析:根据“分别同时从A.B两地出发”、“两车第二次相遇”,可知考查的是两端出发的多次相遇问题,公式为(v1+v2)t=(2n-1)S。代入数据得(60+40)t=(2×2-1)×480,解得t=14.4,由“各自花费一小时卸货”,故经过了14.4+1=15.4小时。故选C。122、要将浓度分别为20%和5%的A、B两种食盐水混合配成浓度为15%的食盐水900克,问5%的食盐水需要多少克?()
A、250
B、285
C、300
D、325
【答案】:答案:C
解析:设需要5%的食盐水x克,则需要20%的食盐水(900-x)克;根据混合后浓度为15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故选C。123、两个人带着宠物狗玩游戏,两人相距200米,并以相同速度1米/秒相向而行,与此同时,宠物狗以3米/秒的速度,在两人之间折返跑,当两人相距60米时,那么宠物狗总共跑的距离为?()
A、270米
B、240米
C、210米
D、300米
【答案】:答案:C
解析:根据狗与两人同时出发可知,狗与两人的运动时间相同。两人从相距200米,相向运动至60米,共行驶200-60=140(米),设两人运动时间为t,有140=(1+1)×t,解得t=70秒。则狗总共跑的距离为3×70=210(米)。故选C。124、某快速反应部队运送救灾物资到灾区。飞机原计划每分钟飞行12千米,由于灾情危急,飞行速度提高到每分钟15千米,结果比原计划提前30分钟到达灾区,则机场到灾区的距离是多少千米?()
A、1600
B、1800
C、2050
D、2250
【答案】:答案:B
解析:设机场到灾区的距离为x,由每分钟飞行12千米可知,原飞行时间为;由每分钟15千米可知,现飞行时间为。根据比原计划提前30分钟,可得,解得x=1800(千米)。故选B。125、一条马路的两边各立着10盏电灯,现在为了节省用电,决定每边关掉3盏,但为了安全,道路起点和终点两边的灯必须是亮的,而且任意一边不能连续关掉两盏。问总共有多少种方案?()
A、120
B、320
C、400
D、420
【答案】:答案:C
解析:每一边7盏亮着的灯形成6个空位,把3盏熄灭的灯插进去,则共有=400种方案。故选C。126、20/9,4/3,7/9,4/9,1/4,()
A、3/7
B、5/12
C、5/36
D、7/36
【答案】:答案:C
解析:20/9,4/3,7/9,4/9,1/4,(5/36)=>80/36,48/36,28/36,16/36,9/36,5/36;分母36,36,36,36,36,36等差;分子80,48,28,16,9,5三级等差。故选C。127、2/3,1/2,3/7,7/18,()
A、4/11
B、5/12
C、7/15
D、3/16
【答案】:答案:A
解析:4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4、5、6、7,接下来是8.分母是6、10、14、18,接下来是22。故选A。128、某年的10月里有5个星期六,4个星期日,则这年的10月1日是?()
A、星期一
B、星期二
C、星期三
D、星期四
【答案】:答案:D
解析:10月有31天,因为有5个星期六,4个星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故选D。129、2,7,14,21,294,()
A、28
B、35
C、273
D、315
【答案】:答案:D
解析:21=7+14,14=2×7,294=14×21,为两项相加、相乘交替得到后-项,即所填数字为21+294=315。故选D。130、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,奇数项是2,偶数项构成公差为1的等差数列,即所填数字为6+(-1)=5。故选B。131、12,23,34,45,56,()
A、66
B、67
C、68
D、69
【答案】:答案:B
解析:依次将相邻两个数中后一个数减去前一个数,构成公差为11的等差数列,即所填的数字为56+11=67。故选B。132、水面上有三艘同向行驶的轮船,其中甲船的时速为63公里,乙、丙两船的时速均为60公里,但由于故障,丙船每连续行驶30分钟后必须停船2分钟。早上10点,三船到达同一位置,问1小时后,甲、丙两船最多相距多少公里?()
A、5
B、7
C、9
D、11
【答案】:答案:B
解析:1小时内,甲船行驶了63公里,丙船最多停车4分钟,即行驶56分钟,行驶路程为56公里。故最多相距7公里。故选B。133、8,3,17,5,24,9,26,18,30,()
A、22
B、25
C、33
D、36
【答案】:答案:B
解析:多重数列。很明显数列很长,确定为多重数列。先考虑交叉,发现没有规律,无对应的答案。因为总共十项,考虑两两分组,再内部作加减乘除方等运算,发现每两项的和依次为11,22,33,44,(55=30+25)。故选B。134、为帮助果农解决销路,某企业年底买了一批水果,平均发给每部门若干筐之后还多了12筐,如果再买进8筐则每个部门可分得10筐,则这批水果共有()筐。
A、192
B、198
C、200
D、212
【答案】:答案:A
解析:由于再买进8筐则每个部门可分得10筐,则总筐数加8应能被10整除,排除B、C。将A项代入题目,可得部门数为(192+8)÷10=20(个),则原来平均发给每部门(192-12)÷20=9(筐),水果筐数为整数解,符合题意。故选A。135、甲种酒精有4升,乙种酒精有6升,混合成的酒精含酒精62%;如果两种酒精溶液一样多,混合成的酒精溶液含酒精61%,乙种酒精溶液含有纯酒精百分之几?()
A、56
B、66
C、58
D、64
【答案】:答案:B
解析:设甲种酒精浓度x%,乙种酒精浓度y%。那么,4×x%+6×y%=(4+6)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购销合同范例样本
- 资产评估服务合同合作策略
- 趣味小学语文阅读教学策略分享
- 车辆质押贷款担保协议模版
- 轻松应对地理题目
- 进口锂电池采购合同
- 退伍军人的专业承诺
- 违规保证书的规范发展
- 酒店家具采购合同格式
- 醉驾反省与觉醒
- 桂花大道延伸段道路工程第一标段施工用电规划方案样本
- 甲状腺消融术护理查房
- 人工智能大学生生涯规划
- 研发部门未来五年发展规划方案
- 2023年亏损企业扭亏专项治理方案
- 人教版小学三年级语文课外阅读理解精练试题全册
- 六年级上册道德与法治《第9课知法守法依法维权》课件
- 胃结构及其功能课件
- 中国电力建设协会-热控调试工程师题库2022
- 企业后勤人员安全培训试卷(附答案)
- 产前诊断(筛查)技术服务申请
评论
0/150
提交评论