版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
公务员行测数量关系试题第一部分单选题(200题)1、从A地到B地为上坡路。自行车选手从A地出发按A-B-A-B的路线行进,全程平均速度为从B地出发,按B-A-B-A的路线行进的全程平均速度的4/5,如自行车选手在上坡路与下坡路上分别以固定速度匀速骑行,问他上坡的速度是下坡速度的()。
A、1/2
B、1/3
C、2/3
D、3/5
【答案】:答案:A
解析:S=VT,当S一定的时候,VT成反比,两次行程的平均速度之比是4:5,故两次行程所用时间之比T1:T2=5:4。设一个下坡的时间是1,一个上坡的时间是n,则上坡速度是下坡速度的1/n。A-B-A-B的过程经历了2个上坡和1个下坡,则T1=2n+1;B-A-B-A的过程经历了2个下坡和1个上坡,则T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故选A。2、145,120,101,80,65,()
A、48
B、49
C、50
D、51
【答案】:答案:A
解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇数项,每项等于首项为12,公差为-2的平方加1;偶数项,每项等于首项为11,公差为-2的平方减1,即所填数字为72-1=48。故选A。3、A、B、C三个试管中各盛有10克、20克、30克水,把某种浓度的盐水10克倒入A中,充分混合后从A中取出10克倒入B中,再充分混合后从B中取出10克倒入C中,最后得到C中盐水的浓度为0.5%。则开始倒入试管A中的盐水浓度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含盐量为(30+10)×0.5%=0.2克,即从B中取出的10克中含盐0.2克,则B的浓度为0.2÷10=2%,进而求出B中含盐量为(20+10)×2%=0.6克,即从A中取出的10克中含盐0.6克,可得A的浓度为0.6÷10=6%,进一步得出A中含盐量为(10+10)×6%=1.2克,故开始倒入A中的盐水浓度为1.2÷10=12%。故选A。4、为帮助果农解决销路,某企业年底买了一批水果,平均发给每部门若干筐之后还多了12筐,如果再买进8筐则每个部门可分得10筐,则这批水果共有()筐。
A、192
B、198
C、200
D、212
【答案】:答案:A
解析:由于再买进8筐则每个部门可分得10筐,则总筐数加8应能被10整除,排除B、C。将A项代入题目,可得部门数为(192+8)÷10=20(个),则原来平均发给每部门(192-12)÷20=9(筐),水果筐数为整数解,符合题意。故选A。5、张大伯卖白菜,开始定价是每千克5角钱,一点都卖不出去,后来每千克降低了几分钱,全部白菜很快卖了出去,一共收入22.26元,则每千克降低了几分钱?
A、3
B、4
C、6
D、8
【答案】:答案:D
解析:代入法,只有降8分时收入才能被价格整除。(2226=2×3×7×53=42×53)。故选D。6、2,6,13,39,15,45,23,()
A、46
B、66
C、68
D、69
【答案】:答案:D
解析:6=2×3,39=13×3,45=15×3。两个数为一组,每组中的第二个数是第一个数的三倍,即所填数字为23×3=69。故选D。7、某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少生产100套;如果每天生产23套服装,就可超过订货任务20套。那么,这批服装的订货任务是多少套?()
A、760
B、1120
C、900
D、850
【答案】:答案:C
解析:由题意每天生产多出3套,总共就会多生产出120,那么计划的天数为40天,所以这批服装为20×40+100=900(套)。故选C。8、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,奇数项是2,偶数项构成公差为1的等差数列,即所填数字为6+(-1)=5。故选B。9、2.1,2.2,4.1,4.4,16.1,()
A、32.4
B、16.4
C、32.16
D、16.16
【答案】:答案:D
解析:偶数项的小数部分和整数部分相同。故选D。10、某年的10月里有5个星期六,4个星期日,则这年的10月1日是?()
A、星期一
B、星期二
C、星期三
D、星期四
【答案】:答案:D
解析:10月有31天,因为有5个星期六,4个星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故选D。11、小张购买了2个苹果、3根香蕉、4个面包和5块蛋糕,共消费58元。如果四种商品的单价都是正整数且各不相同,则每块蛋糕的价格最高可能为多少元?()
A、5
B、6
C、7
D、8
【答案】:答案:D
解析:设苹果、香蕉、面包、蛋糕的单价分别为x、y、z、w,根据共消费58元,得2x+3y+4z+5w=58。代入排除,根据最高,优先从值最大的选项代入。D选项,当w=8时,可得2x+3y+4z=18,由2x、4z、18均为偶数,则3y为偶数,即y为偶数且小于6。当y=2,有2x+4z=12,即x+2z=6,均为正整数且各不相同,若z=1,则x=4,此时满足题意。故选D。12、某商店有两个进价不同的计算器都卖了64元,其中一个赢利60%,另一个亏本20%。在这次买卖中,这家商店()。
A、不赔不赚
B、赚了8元
C、赔了8元
D、赚了32元
【答案】:答案:B
解析:根据题意可知,64÷(1+60%)=40,64÷(1-20%)=80,即两个计算器的成本分别为40元、80元。64+64-40-80=8元,即赚了8元。故选B。13、21,59,1117,2325,(),9541
A、3129
B、4733
C、6833
D、8233
【答案】:答案:B
解析:原数列各项可作如下拆分:[2|1],[5|9],[11|17],[23|25],[47|33],[95|41]。其中前半部分数字作差后构成等比数列,后半部分作差后构成等差数列。因此未知项为4733。故选B。14、有一1500米的环形跑道,甲,乙二人同时同地出发,若同方向跑,50分钟后甲比乙多跑一圈,若以反方向跑,2分钟后二人相遇,则乙的速度为()。
A、330米/分钟
B、360米/分钟
C、375米/分钟
D、390米/分钟
【答案】:答案:B
解析:同向追及50分钟后甲比乙多跑一圈得:(V甲-V乙)×50=1500;由反向跑2分钟后相遇有:(V甲+V乙)×2=1500,解得V乙=360(米/分钟)。故选B。15、2/3,1/2,3/7,7/18,()
A、4/11
B、5/12
C、7/15
D、3/16
【答案】:答案:A
解析:4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4、5、6、7,接下来是8.分母是6、10、14、18,接下来是22。故选A。16、118,199,226,(),238
A、228
B、230
C、232
D、235
【答案】:答案:D
解析:相邻两项后一项减前一项,199-118=81,226-199=27,235-226=9,238-235=3,是公比为的等比数列,即所填数字为238-3=226+9=235。故选D。17、甲、乙、丙三辆汽车分别从A地开往千里之外的B地。若乙比甲晚出发30分钟,则乙出发后2小时追上甲;若丙比乙晚出发20分钟,则丙出发后5小时追上乙。若甲出发10分钟后乙出发,当乙追上甲时,丙才出发,则丙追上甲所需时间是()。
A、110分钟
B、150分钟
C、127分钟
D、128分钟
【答案】:答案:B
解析:设甲、乙、丙三辆汽车的速度分别为x、y、z。由于甲行驶30分钟的路程,乙需要2小时才能追上,则30x=(y-x)×2×60,化简得x∶y=4∶5。又因乙行驶20分钟的路程,丙需要5小时才能追上,则20y=(z-y)×5×60,化简得y∶z=15∶16。所以三辆汽车的速度x∶y∶z=12∶15∶16。赋值甲、乙、丙的速度分别为12、15、16,甲出发10分钟后乙出发,则乙追上甲的时间为(分钟),故丙出发时甲已经行驶10+40=50(分钟),设丙追上甲所需时间是t分钟,可得方程12×50=(16-12)×t,解得t=150。故选B。18、84,12,48,30,39,()
A、23
B、36.5
C、34.5
D、43
【答案】:答案:C
解析:依次将相邻两个数中前一个数减去后一个数得72,-36,18,-9,构成公比为-0.5的等比数列,即所填数字为39-4.5=34.5。故选C。19、1,2,0,3,-1,4,()
A、-2
B、0
C、5
D、6
【答案】:答案:A
解析:奇数项1、0、-1、(-2)是公差为-1的等差数列;偶数项2、3、4是连续自然数。故选A。20、某校二年级全部共3个班的学生排队.每排4人,5人或6人,最后一排都只有2人.这个学校二年级有()名学生。
A、120
B、122
C、121
D、123
【答案】:答案:B
解析:由题意知,学生数除以4、5、6均余2,由代入法可以得到,只有B项满足条件。21、1,2,6,30,210,()
A、1890
B、2310
C、2520
D、2730
【答案】:答案:B
解析:2÷1=2,6÷2=3,30÷6=5,210÷30=7,相邻两项后一项除以前一项的商构成连续的质数列,即所填数字为210×11=2310。故选B。22、1,1,2,6,30,240,()
A、1200
B、1800
C、2400
D、3120
【答案】:答案:D
解析:1*2=2,2*3=6,6*5=30,30*8=240,后面除以前面的商是斐波那契数列2、3、5、8,即后一项是前面2项的和,8后面是13,240后面应该是240*13=3120。故选D。23、12,23,34,45,56,()
A、66
B、67
C、68
D、69
【答案】:答案:B
解析:依次将相邻两个数中后一个数减去前一个数,构成公差为11的等差数列,即所填的数字为56+11=67。故选B。24、5,17,21,25,()
A、30
B、31
C、32
D、34
【答案】:答案:B
解析:都为奇数。故选B。25、在一次知识竞赛中,甲、乙两单位平均分为85分,甲单位得分比乙单位高10分,则乙单位得分为()分。
A、88
B、85
C、80
D、75
【答案】:答案:C
解析:根据“甲、乙平均分为85分”,可得总分为85×2=170(分)。设乙得分为x,那么甲得分为x+10,由题意有x+x+10=170,解得x=80。故选C。26、1,8,9,4,(),1/6
A、3
B、2
C、1
D、1/3
【答案】:答案:C
解析:1=14,8=23,9=32,4=41,1=50,1/6=6(-1)。故选C。27、某木场有甲,乙,丙三位木匠师傅生产桌椅,甲每天能生产12张书桌或13把椅子;乙每天能生产9张书桌或12把椅子,丙每天能生产9张书桌或15把椅子,现在书桌和椅子要配套生产(每套一张书桌一把椅子),则7天内这三位师傅最多可以生产桌椅()套。
A、116
B、129
C、132
D、142
【答案】:答案:B
解析:将甲、乙、丙三位木匠师傅生产桌椅的效率列表如下,分析可知,甲生产书桌的相对效率最高,丙生产椅子的相对效率最高,则安排甲7天全部生产书桌,丙7天全部生产椅子,乙协助甲丙完成。甲7天可生产桌子12×7=84(张),丙7天可生产椅子15×7=105(把)。设乙生产书桌x天,则生产椅子(7-x)天,当生产的书桌数与椅子数相同时,获得套数最多,可列方程84+9x=105+12×(7-x),解得x=5,则乙可生产书桌9×5=45(张)。故7天内这三位师傅最多可以生产桌椅84+45=129(套)。故选B。28、-1,3,-3,-3,-9,()
A、-9
B、-4
C、-14
D、-45
【答案】:答案:D
解析:题干倍数关系明显,考虑作商。后项除以前项得到新数列:-3、-1、1、3,新数列为公差是2的等差数列,则新数列的下一项应为5,所求项为:-9×5=-45。故选D。29、a除以5余1,b除以5余4,如果3a>b,那么3a-b除以5余几?()
A、1
B、2
C、3
D、4
【答案】:答案:D
解析:a除以5余1,假设a=6;b除以5余4,假设b=9,符合3a>b。故3a-b=18-9=9,9除以5余4。故选D。30、修一条公路,甲工程队单独做需要40天,乙工程队单独做需要24天。现在两队合作,同时从两端开工,在距中点750米处两队相遇。那么这条公路长多少米?()
A、3750
B、3000
C、4000
D、6000
【答案】:答案:D
解析:甲乙效率之比=24:40=3:5,完成的任务量之比3:5、相差2份对应对应750×2=1500米,总任务量8份对应1500×4=6000米。故选D。31、2,7,13,20,25,31,()
A、35
B、36
C、37
D、38
【答案】:答案:D
解析:依次将相邻两个数中后一个数减去前一个数得5,6,7,5,6,为(5,6,7)三个数字组成的循环数列,即所填数字为31+7=38。故选D。32、一旅行团共有50位游客到某地旅游,去A景点的游客有35位,去B景点的游客有32位,去C景点的游客有27位,去A、B景点的游客有20位,去B、C景点的游客有15位,三个景点都去的游客有8位,有2位游客去完一个景点后先行离团,还有1位游客三个景点都没去。那么,50位游客中有多少位恰好去了两个景点?()
A、29
B、31
C、35
D、37
【答案】:答案:A
解析:设去两个景点的人数为y,根据三集合非标准型公式可得:35+32+27-y-2×8=50-1,解得y=29。故选A。33、1,2,4,3,5,6,9,18,()
A、14
B、24
C、27
D、36
【答案】:答案:A
解析:位于奇数项的1、4、5、9构成和数列,位于偶数项的2、3、6、18构成积数列,即所填的奇数项应为5+9=14。故选A。34、2,12,40,112,()
A、224
B、232
C、288
D、296
【答案】:答案:C
解析:原数列可以写成1×2,3×4,5×8,7×16,前一个乘数数列为1,3,5,7,是等差数列,下一项是9,后一个乘数数列为2,4,8,16,是等比数列,下一项是32,所以原数列空缺项为9×32=288。故选C。35、甲种酒精有4升,乙种酒精有6升,混合成的酒精含酒精62%;如果两种酒精溶液一样多,混合成的酒精溶液含酒精61%,乙种酒精溶液含有纯酒精百分之几?()
A、56
B、66
C、58
D、64
【答案】:答案:B
解析:设甲种酒精浓度x%,乙种酒精浓度y%。那么,4×x%+6×y%=(4+6)×62%,x%+y%=2×61%,得x=56,y=66,即乙种酒精浓度为66%。故选B。36、4,5,9,18,34,()
A、59
B、37
C、46
D、48
【答案】:答案:A
解析:该数列的后项减去前项得到一个平方数列,故空缺处应为34+25=59。故选A。37、2,3,10,23,()
A、35
B、42
C、68
D、79
【答案】:答案:B
解析:相邻两项后一项减前一项,3-2=1,10-3=7,13-10=13,42-23=19,是一个公差为6的等差数列,即所填数字为23+19=42。故选B。解析:设每个小长方形的长为x厘米、宽为y厘米,由题意可知,2x+(x+y)=88÷2,2x=3y,得x=12,y=8。即大长方形的面积为12×8×5=480平方厘米。故选C。38、2,1,2/3,1/2,()
A、3/4
B、1/4
C、2/5
D、5/6
【答案】:答案:C
解析:数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5。故选C。39、0,4,18,(),100
A、48
B、58
C、50
D、38
【答案】:答案:A
解析:思路一:0、4、18、48、100=>作差=>4、14、30、52=>作差=>10、16、22等差数列。思路二:13-12=0;23-22=4;33-32=18;43-42=48;53-52=100。思路三:0×1=0;1×4=4;2×9=18;3×16=48;4×25=100。思路四:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100可以发现:0,2,6,(12),20依次相差2,4,(6),8。思路五:0=12×0;4=22×1;18=32×2;()=X2×Y;100=52×4所以()=42×3。40、102,314,526,()
A、624
B、738
C、809
D、849
【答案】:答案:B
解析:314-102=212,526-314=212。后一项-前一项=212,即所填数字为536+212=738。故选B。41、钢铁厂某年总产量的1/6为型钢类,1/7为钢板类,钢管类的产量正好是型钢和钢板产量之差的14倍,而钢丝的产量正好是钢管和型钢产量之和的一半,而其它产品共为3万吨。问该钢铁厂当年的产量为多少万吨?()
A、48
B、42
C、36
D、28
【答案】:答案:D
解析:假设总产量为,则型钢类产量为,钢板类产量为,钢管类为,钢丝的产量为,则,解得万吨,则总产量万吨。故正确答案为D。42、为帮助果农解决销路,某企业年底买了一批水果,平均发给每部门若干筐之后还多了12筐,如果再买进8筐则每个部门可分得10筐,则这批水果共有()筐。
A、192
B、198
C、200
D、212
【答案】:答案:A
解析:由于再买进8筐则每个部门可分得10筐,则总筐数加8应能被10整除,排除B、C。将A项代入题目,可得部门数为(192+8)÷10=20(个),则原来平均发给每部门(192-12)÷20=9(筐),水果筐数为整数解,符合题意。故选A。43、某楼盘的地下停车位,第一次开盘时平均价格为15万元/个;第二次开盘时,车位的销售量增加了一倍、销售额增加了60%。那么,第二次开盘的车位平均价格为()。
A、10万元/个
B、11万元/个
C、12万元/个
D、13万元/个
【答案】:答案:C
解析:销售额=平均价格×销售量,已知第一次开盘平均价格为15万元/个,赋销售量为1,则销售额为15万。第二次开盘时,销售量增加了一倍,即为2,销售额增加了60%,得销售额为15×(1+60%)=24(万元),故第二次开盘平均价格为24÷2=12(万元/个)。故选C。44、84,12,48,30,39,()
A、23
B、36.5
C、34.5
D、43
【答案】:答案:C
解析:依次将相邻两个数中前一个数减去后一个数得72,-36,18,-9,构成公比为-0.5的等比数列,即所填数字为39-4.5=34.5。故选C。45、1,3,2,6,11,19,()
A、24
B、36
C、29
D、38
【答案】:答案:B
解析:该数列为和数列,即前三项之和为第四项。故空缺处应为6+11+19=36。故选B。46、-1,1,7,25,79,()
A、121
B、241
C、243
D、254
【答案】:答案:B
解析:相邻两项之差依次是2,6,18,54,(162),这是一个公比为3的等比数列,79+162=(241)。故选B。47、2,7,14,21,294,()
A、28
B、35
C、273
D、315
【答案】:答案:D
解析:21=7+14,14=2×7,294=14×21,为两项相加、相乘交替得到后-项,即所填数字为21+294=315。故选D。48、玉米的正常市场价格为每公斤1.86元到2.18元,近期某地玉米价格涨至每公斤2.68元。经测算,向市场每投放储备玉米100吨,每公斤玉米价格下降0.05元。为稳定玉米价格,向该地投放储备玉米的数量不能超过()。
A、800吨
B、1080吨
C、1360吨
D、1640吨
【答案】:答案:D
解析:要稳定玉米价格,玉米的价格必须调整至正常区间。所以最低下降为每公斤1.86元,即下降了2.68-1.86=0.82(元)。因为每投放100吨,价格下降0.05元,所以投放玉米的数量不能超过0.82÷0.05×100=1640(吨)。故选D。49、133/256,125/64,117/16,()
A、109/4
B、103/2
C、109/6
D、115/8
【答案】:答案:A
解析:分子133、125、117、(109)是公差为-8的等差数列,分母256、64、16、(4)是公比为1/4的等比数列。故选A。50、某饮料店有纯果汁(即浓度为100%)10千克,浓度为30%的浓缩还原果汁20千克。若取纯果汁、浓缩还原果汁各10千克倒入10千克纯净水中,再倒入10千克的浓缩还原果汁,则得到的果汁浓度为多少。()
A、40%
B、37.5%
C、35%
D、30%
【答案】:答案:A
解析:根据题干可得,一共倒入纯果汁(即浓度为100%)10千克,纯净水10千克,浓度为30%的浓缩还原果汁20千克。可知最终溶液的量为10+10+20=40(千克),最终溶质为10+20×30%=16(千克)。则最终果汁浓度=16÷40×100%=40%。故选A。51、某商店以5元/斤的价格购入一批蔬菜,上午以8元/斤的价格卖出总进货量的60%,中午以上午售出价的8折卖出总进货量的20%,下午以中午售出价的一半卖出剩余货量的一半,最后获利210元。则该商店一共购入多少斤蔬菜?()
A、140
B、150
C、160
D、180
【答案】:答案:B
解析:赋值购进的量为10斤,上午以8元/斤的价格卖出6斤,中午以6.4元/斤的价格卖出2斤,下午以3.2元/斤的价格卖出1斤,总收入=8×6+6.4×2+3.2×1=64元,总利润=64-5×10=14元,实际购入(210/14)×10=150斤。故选B。52、学校举行象棋比赛,共有甲、乙、丙、丁4支队。规定每支队都要和另外3支队各比赛一场,胜得3分,败得0分,平双方各得1分。已知:(1)这4支队三场比赛的总得分为4个连续的奇数;(2)乙队总得分排在第一;(3)丁队恰有两场同对方打成平局,其中有一场是与丙队打成平局的。问丙队得几分?()
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支队均比赛3场,因此最高分不超过9分,又知总得分为4个连续的奇数,因此得分有3、5、7、9和1、3、5、7两种情况。若最高分为9分,那么排名第二的队最多赢现场得6分,不可能得7分,不符合题意,故乙队得7分,即2胜1平。由条件(3)知,丁队恰有两场同对方打成平局,积分2分,为偶数,故另一场只能为胜,共得5分。由此可知,丙队得分为1或3分。由于丁队一场未败,故乙队获胜的两场只能是甲队和丙队。目前已知丙队战两场,一负一平,积1分,另一场无论是胜或平,积分均为偶数,故这一场只能为负,总积分为1分。故选A。53、如果现在是18点整,那么分针旋转1990圈之后是几点钟?()
A、16
B、17
C、18
D、19
【答案】:答案:A
解析:分针旋转1圈为一小时,所以分针旋转12圈,时针旋转1圈,仍为18点整。由“1990÷12=165余10”可知,此时时钟表示的时间应是16点整。故选A。54、1,2,3,6,12,()
A、16
B、20
C、24
D、36
【答案】:答案:C
解析:分3组=>(1,2),(3,6),(12,24)=>每组后项除以前项=>2、2、2。故选C。55、2,3,8,27,32,(),128
A、64
B、243
C、275
D、48
【答案】:答案:B
解析:间隔组合数列。奇数项是公比为4的等比数列,偶数项是公比为9的等比数列,所求项为27×9=(243)。故选B。56、8,4,8,10,14,()
A、22
B、20
C、19
D、24
【答案】:答案:C
解析:题干数列为递推数列,规律为:8÷2+4=8,4÷2+8=10,8÷2+10=14,即第一项÷2+第二项=第三项,因此未知项为10÷2+14=19。故选C。57、2,12,40,112,()
A、224
B、232
C、288
D、296
【答案】:答案:C
解析:原数列可以写成1×2,3×4,5×8,7×16,前一个乘数数列为1,3,5,7,是等差数列,下一项是9,后一个乘数数列为2,4,8,16,是等比数列,下一项是32,所以原数列空缺项为9×32=288。故选C。58、3,-6,12,-24,()
A、42
B、44
C、46
D、48
【答案】:答案:D
解析:公比为-2的等比数列。故选D。59、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,为奇数项是2偶数项为公差为1的等差数列,即所填数字为6+(-1)=5。故选B。60、有一个五位数,左边的三位数比右边的两位数的4倍还多4,如果把右边两位数移到最前面,新的五位数比原来的2倍还多11122,则原来的五位数是()。
A、18044
B、24059
C、27267
D、30074
【答案】:答案:B
解析:多位数问题考虑用代入排除法解题。代入A选项,180=44×4+4,但44180≠18044×2+11122,不符合题意,排除;代入B选项,240=59×4+4,59240=24059×2+11122,符合题意,正确。故选B。61、4,8,28,216,()
A、6020
B、2160
C、4200
D、4124
【答案】:答案:A
解析:4×(8-1)=28,8×(28-1)=216,即所填数字为28×(216-1)=6020。故选A。62、2,3,10,15,26,35,()
A、40
B、45
C、50
D、55
【答案】:答案:C
解析:2=1平方+1,3=2平方-1,10=3平方+1,15=4平方-1,26=5平方+1,35=6平方-1,问号=7平方+1,问号=50。故选C。63、2.1,2.2,4.1,4.4,16.1,()
A、32.4
B、16.4
C、32.16
D、16.16
【答案】:答案:D
解析:偶数项的小数部分和整数部分相同。故选D。64、某出版社新招了10名英文、法文和日文方向的外文编辑,其中既会英文又会日文的小李是唯一掌握一种以上外语的人。在这10人中,会法文的比会英文的多4人,是会日文人数的两倍。问只会英文的有几人?()
A、2
B、0
C、3
D、1
【答案】:答案:D
解析:设会日文的有x人,则会法文的有2x人,会英文的有(2x-4)人,由于小李既会英文也会日文,被统计两次,故10人统计了11人次。根据人次总数,得方程11=x+2x+2x-4,解得x=3,则会英文的人为2x-4=2(人),因小李既会英文又会日文,所以只会英文的只有2-1=1(人),故选D。65、某楼盘的地下停车位,第一次开盘时平均价格为15万元/个;第二次开盘时,车位的销售量增加了一倍、销售额增加了60%。那么,第二次开盘的车位平均价格为()。
A、10万元/个
B、11万元/个
C、12万元/个
D、13万元/个
【答案】:答案:C
解析:销售额=平均价格×销售量,已知第一次开盘平均价格为15万元/个,赋销售量为1,则销售额为15万。第二次开盘时,销售量增加了一倍,即为2,销售额增加了60%,得销售额为15×(1+60%)=24(万元),故第二次开盘平均价格为24÷2=12(万元/个)。故选C。66、5,10,20,(),80
A、30
B、40
C、50
D、60
【答案】:答案:B
解析:公比为2的等比数列。故选B。67、12,27,72,(),612
A、108
B、188
C、207
D、256
【答案】:答案:C
解析:(第一项-3)×3=第二项,(72-3)×3=(207),(207-3)×3=612。故选C。68、130,68,30,(),2
A、11
B、12
C、10
D、9
【答案】:答案:C
解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故选C。69、2,3,6,18,108,()
A、1944
B、1620
C、1296
D、1728
【答案】:答案:A
解析:2×3=6,3×6=18,6×18=108,……前两项相乘等于下一项,则所求项为18×108,尾数为4。故选A。70、某人租下一店面准备卖服装,房租每月1万元,重新装修花费10万元。从租下店面到开始营业花费3个月时间。开始营业后第一个月,扣除所有费用后的纯利润为3万元。如每月纯利润都比上月增加2000元而成本不变,问该店在租下店面后第几个月内收回投资?()
A、7
B、8
C、9
D、10
【答案】:答案:A
解析:由题意可得租下店面前3个月成本为1×3+10=13(万元),租下店面第4个月开始营业,营业后各月获得的纯利润构成首项为3万元、公差为0.2万元的等差数列:3万元、3.2万元、3.4万元、3.6万元。由3+3.2+3.4+3.6=13.2>13,即第7个月收回投资。故选A。71、9,20,42,86,(),350
A、172
B、174
C、180
D、182
【答案】:答案:B
解析:20=9×2+2,42=20×2+2,86=42×2+2,第一项×2+2=第二项,即所填数字为86×2+2=174。故选B。72、甲、乙、丙三名质检员对一批依次编号为1~100的电脑进行质量检测,每个人均从随机序号开始,按顺序往后检测,如检测到编号为100的电脑,则该质检员的检测工作结束。某一时刻,甲检测了76台电脑,乙检测了61台电脑,丙检测了54台电脑,则甲、乙、丙三人均检测过的电脑至少有()台。
A、12
B、15
C、16
D、18
【答案】:答案:B
解析:因为甲、乙、丙三人均从随机序号开始,按顺序往后检测。为了使三人均检测过的电脑最少,所以三人的检测要更分散,因为甲检测了76台电脑,覆盖面比较大,所以可以先把乙、丙共同检测的电脑分散在序号的最两端,最少为61+54-100=15(台),甲会覆盖到乙、丙检测的公共部分,故三人均检测过的为15台。故选B。73、44,52,59,73,83,94,()
A、107
B、101
C、105
D、113
【答案】:答案:A
解析:每相邻的两项作差,得到8,7,14,10,11,每一个差是原数列中前一项个位数与十位数字的和,即8=4+4,7=5+2,14=5+9,10=7+3,11=8+3,所以9+4=13,所以未知项为13+94=107。故选A。74、6,3,5,13,2,63,()
A、-36
B、-37
C、-38
D、-39
【答案】:答案:B
解析:6×3-5=13,3×5-13=2,5×13-2=63,第四项=第一项×第二项-第三项,即所填数字为13×2-63=-37。故选B。75、25与一个三位数相乘个位是0,与这个三位数相加有且只有一次进位,像这样的三位数总共有多少个? ()
A、48
B、126
C、174
D、180
【答案】:答案:C
解析:因为25与一个三位数相乘个位是0,所以这个三位数个位上的数是0、2、4、6、8。又因为与这个三位数相加有且只有一次进位,所以当个位是0、2、4时,十位必须是8或9,百位是1-8八个数都可以,这种情况有48(8乘2乘3等于48)个数满足条件;当个位是6或8时,十位可以是0、1、2、3、4、5、6七个数,百位是1-9九个数,这种情况有126(9乘7乘2等于126)个数满足条件;终上所述一共有174(48+126=174)个,即:像这样的三位数总共有174个。故选C。76、30,42,56,72,()
A、86
B、60
C、90
D、94
【答案】:答案:C
解析:第一次做差之后为12、14、16,是公差为2的等差数列,下一个应为18,原数列下一项为18+72=90。故选C。77、某木场有甲,乙,丙三位木匠师傅生产桌椅,甲每天能生产12张书桌或13把椅子;乙每天能生产9张书桌或12把椅子,丙每天能生产9张书桌或15把椅子,现在书桌和椅子要配套生产(每套一张书桌一把椅子),则7天内这三位师傅最多可以生产桌椅()套。
A、116
B、129
C、132
D、142
【答案】:答案:B
解析:将甲、乙、丙三位木匠师傅生产桌椅的效率列表如下,分析可知,甲生产书桌的相对效率最高,丙生产椅子的相对效率最高,则安排甲7天全部生产书桌,丙7天全部生产椅子,乙协助甲丙完成。甲7天可生产桌子12×7=84(张),丙7天可生产椅子15×7=105(把)。设乙生产书桌x天,则生产椅子(7-x)天,当生产的书桌数与椅子数相同时,获得套数最多,可列方程84+9x=105+12×(7-x),解得x=5,则乙可生产书桌9×5=45(张)。故7天内这三位师傅最多可以生产桌椅84+45=129(套)。故选B。78、依法纳税是公民的义务,按规定,全月工资薪金所得不超过800元的部分不必纳税,超过800元的部分,按下列分段累进计算税款,某人5月份应交纳此项税款26.78元,则他的当月工资薪金所得介于()。
A、800~900
B、900~1200
C、1200~1500
D、1500~2800
【答案】:答案:C
解析:根据表格:工资中800~1300的部分,需纳税500×5%=25(元);还剩税款26.78-25=1.78(元),即在1300元以上的部分为(元),则他当月工资薪金为1300+17.8=1317.8(元)。故选C。79、某单位组织工会活动,30名员工自愿参加做游戏。游戏规则:按1~30号编号并报数,第一次报数后,单号全部站出来,然后每次余下的人中第一个开始站出来,隔一人站出来一个人。最后站出来的人给大家唱首歌。那么给大家唱歌的员工编号是()。
A、14
B、16
C、18
D、20
【答案】:答案:B
解析:第一次报数后,单号全部站出来,剩余号码为2、4、6、8、10······30,均为2的倍数;每次余下的人中第一个开始站出来,隔一人站出来一个人,剩余号码为4、8、12、16、20、24、28,均为4的倍数;再从余下的号码中第一个人开始站出来,隔一个人站出来一个人,剩余号码为8、16、24,均为8的倍数;重复上一次的步骤,剩余16号,为16的倍数。1—30中16的倍数只有16。故选B。80、从A地到B地为上坡路。自行车选手从A地出发按A-B-A-B的路线行进,全程平均速度为从B地出发,按B-A-B-A的路线行进的全程平均速度的4/5,如自行车选手在上坡路与下坡路上分别以固定速度匀速骑行,问他上坡的速度是下坡速度的()。
A、1/2
B、1/3
C、2/3
D、3/5
【答案】:答案:A
解析:S=VT,当S一定的时候,VT成反比,两次行程的平均速度之比是4:5,故两次行程所用时间之比T1:T2=5:4。设一个下坡的时间是1,一个上坡的时间是n,则上坡速度是下坡速度的1/n。A-B-A-B的过程经历了2个上坡和1个下坡,则T1=2n+1;B-A-B-A的过程经历了2个下坡和1个上坡,则T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故选A。81、1,2,3,6,12,24,()
A、48
B、45
C、36
D、32
【答案】:答案:A
解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N项=第N-1项+…+第一项,即所填数字为1+2+3+6+12+24=48。故选A。82、以正方形的4个顶点和中心点中的任意三点为顶点可以构成几种面积不等的三角形?()
A、1
B、2
C、3
D、4
【答案】:答案:B
解析:若3个点都从正方形的4个顶点中取,则得到的三角形面积是正方形面积的一半:若3个点中有一个是中心点,其他2个是正方形的顶点,则得到的三角形面积是正方形面积的四分之一。因此,可以构成2种面积不等的兰角形。故选B。83、41,59,32,68,72,()
A、28
B、36
C、40
D、48
【答案】:答案:A
解析:两两分组得到(41,59),(32,68),(72,()),发现组内做和均为100。故选A。84、2,3,6,18,108,()
A、1944
B、1620
C、1296
D、1728
【答案】:答案:A
解析:2×3=6,3×6=18,6×18=108,……前两项相乘等于下一项,则所求项为18×108,尾数为4。故选A。85、某种茶叶原价30元一包,为了促销,降低了价格,销量增加了二倍,收入增加了五分之三,则一包茶叶降价()元。
A、12
B、14
C、13
D、11
【答案】:答案:B
解析:设原来茶叶的销量为1,那么现在销量为3。原来收入为30元,现在收入为30×(1+3/5)=48元,每包茶叶为48÷3=16元,降价30-16=14元。故选B。86、设袋中装有标着数字为1,2,…,8等8个签,并规定标有数字1,4,7的为中奖号。甲、乙、丙、丁
4人依次从袋中随机抽取一个签、已知丙中奖了、则乙不中奖的概率为多少?()
A、5/8
B、3/7
C、3/8
D、5/7
【答案】:答案:D
解析:已知丙中奖,则剩余7个签,还有2个是中奖号,可得乙不中奖概率为。故选D。87、某高速公路收费站对过往车辆的收费标准是:大型车30元/辆、中型车15元/辆、小型车10元/辆。某天,通过收费站的大型车与中型车的数量比是5∶6,中型车与小型车的数量比是4∶11,小型车的通行费总数比大型车的多270元,这天的收费总额是()。
A、7280元
B、7290元
C、7300元
D、7350元
【答案】:答案:B
解析:大、中、小型车的数量比为10∶12∶33。以10辆大型车、12辆中型车、33辆小型车为一组。每组小型车收费比大型车多33×10-10×30=30元。实际多270元,说明共通过了270÷30=9组。每组收费10×30+12×15+33×10=810元,收费总额为9×810=7290元。故选B。88、1806,1510,1214,918,()
A、724
B、722
C、624
D、622
【答案】:答案:D
解析:百位和千位看做一个数列,是18,15,12,9,构成公差为-3的等差数列,所以下一项应为6;十位和个位看做一个数列,是06,10,14,18,构成公差为4的等差数列,所以下一项应为22。故未知项应为622。故选D。89、一条马路的两边各立着10盏电灯,现在为了节省用电,决定每边关掉3盏,但为了安全,道路起点和终点两边的灯必须是亮的,而且任意一边不能连续关掉两盏。问总共有多少种方案?()
A、120
B、320
C、400
D、420
【答案】:答案:C
解析:每一边7盏亮着的灯形成6个空位,把3盏熄灭的灯插进去,则共有=400种方案。故选C。90、水面上有三艘同向行驶的轮船,其中甲船的时速为63公里,乙、丙两船的时速均为60公里,但由于故障,丙船每连续行驶30分钟后必须停船2分钟。早上10点,三船到达同一位置,问1小时后,甲、丙两船最多相距多少公里?()
A、5
B、7
C、9
D、11
【答案】:答案:B
解析:1小时内,甲船行驶了63公里,丙船最多停车4分钟,即行驶56分钟,行驶路程为56公里。故最多相距7公里。故选B。91、119,83,36,47,()
A、-37
B、-11
C、11
D、37
【答案】:答案:B
解析:119=83+36,83=36+47,即所填数字为36-47=-11。故选B。92、为帮助果农解决销路,某企业年底买了一批水果,平均发给每部门若干筐之后还多了12筐,如果再买进8筐则每个部门可分得10筐,则这批水果共有()筐。
A、192
B、198
C、200
D、212
【答案】:答案:A
解析:由于再买进8筐则每个部门可分得10筐,则总筐数加8应能被10整除,排除B、C。将A项代入题目,可得部门数为(192+8)÷10=20(个),则原来平均发给每部门(192-12)÷20=9(筐),水果筐数为整数解,符合题意。故选A。93、-13,19,58,106,165,()
A、189
B、198
C、232
D、237
【答案】:答案:D
解析:二级等差。(即作差2次后,所得相同)。故选D。94、8,4,8,10,14,()
A、22
B、20
C、19
D、24
【答案】:答案:C
解析:题干数列为递推数列,规律为:8÷2+4=8,4÷2+8=10,8÷2+10=14,即第一项÷2+第二项=第三项,因此未知项为10÷2+14=19。故选C。95、1,2,0,3,-1,4,()
A、-2
B、0
C、5
D、6
【答案】:答案:A
解析:奇数项1、0、-1、(-2)是公差为-1的等差数列;偶数项2、3、4是连续自然数。故选A。96、某服装店有一批衬衣共76件,分别卖给了33位顾客,每位顾客最多买了3件。衬衣定价为100元,买1件按原价,买2件总价打九折,买3件总价打八折。最后卖完这批衬衣共收入6460元,则买了3件的顾客有()位。
A.4
B.8
C.14
D.15
【答案】:答案:C
解析:由题意可设买了1件、2件、3件衣服的人数分别为x、y、z人,则可得x+y+z=33,x+2y+3z=76,,联立求解可得x=4,y=15,z=14。故正确答案为C。97、办公室小李发现写字台上的台历很久没有翻了,就一次翻了7张,这些台历的日期数加起来恰好是77,请问这一天是几号?()
A、14
B、15
C、16
D、17
【答案】:答案:B
解析:翻过去的7天的日期是公差为1的等差数列,和是77,根据等差数列求和公式,可知中位数=77÷7=11,7天中位数是第4天即第4天为11号。第七天是11+(7-4)×1=14号,可知今天是15号。故选B。98、145,120,101,80,65,()
A、48
B、49
C、50
D、51
【答案】:答案:A
解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇数项,每项等于首项为12,公差为-2的平方加1;偶数项,每项等于首项为11,公差为-2的平方减1,即所填数字为72-1=48。故选A。99、4/5,16/17,16/13,64/37,()
A、64/25
B、64/21
C、35/26
D、75/23
【答案】:答案:A
解析:已知数列可转化为:8/10,16/17,32/26,64/37,(),分子8,16,32,64,()是公比为2的等比数列,分母10,17,26,37,()构成二级等差数列。故第五项的分子应是128,分母是50,约分后为64/25。故选A。100、某快速反应部队运送救灾物资到灾区。飞机原计划每分钟飞行12千米,由于灾情危急,飞行速度提高到每分钟15千米,结果比原计划提前30分钟到达灾区,则机场到灾区的距离是多少千米?()
A、1600
B、1800
C、2050
D、2250
【答案】:答案:B
解析:设机场到灾区的距离为x,由每分钟飞行12千米可知,原飞行时间为;由每分钟15千米可知,现飞行时间为。根据比原计划提前30分钟,可得,解得x=1800(千米)。故选B。101、118,199,226,(),238
A、228
B、230
C、232
D、235
【答案】:答案:D
解析:相邻两项后一项减前一项,199-118=81,226-199=27,235-226=9,238-235=3,是公比为的等比数列,即所填数字为238-3=226+9=235。故选D。102、大年三十彩灯悬,彩灯齐明光灿灿,三三数时能数尽,五五数时剩一盏,七七数时刚刚好,八八数时还缺三,请你自己算一算,彩灯至少有多少盏?()
A、21
B、27
C、36
D、42
【答案】:答案:A
解析:由三三数时能数尽、七七数时刚刚好可知,彩灯的数量能同时被3和7整除,排除B、C。又由五五数时剩一盏可知,彩灯的数量除以5余1,排除D。故选A。103、在某企业,40%的员工有至少3年的工龄,16个员工有至少8年的工龄。如果90%的员工的工龄不足8年,则工龄至少3年但不足8年的员工有()人。
A、48
B、64
C、80
D、144
【答案】:答案:A
解析:由于不足8年工龄的员工占90%,则至少8年工龄的员工占1-90%=10%,可得员工总数为16÷10%=160(人),故工龄至少3年但不足8年的员工有160×40%-16=48(人)。故选A。104、1,6,5,7,2,8,6,9,()
A、1
B、2
C、3
D、4
【答案】:答案:C
解析:本题为隔项递推数列,存在关系:第三项=第二项-第一项,第五项=第四项-第三项,……因此未知项为9-6=3。故选C。105、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多少?()
A、256
B、486
C、556
D、376
【答案】:答案:B
解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不如将它换成2个3。因为2×2×2=8,而3×3=9。故拆分出的自然数中,至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为243×2=486。故选B。106、玉米的正常市场价格为每公斤1.86元到2.18元,近期某地玉米价格涨至每公斤2.68元。经测算,向市场每投放储备玉米100吨,每公斤玉米价格下降0.05元。为稳定玉米价格,向该地投放储备玉米的数量不能超过()。
A、800吨
B、1080吨
C、1360吨
D、1640吨
【答案】:答案:D
解析:要稳定玉米价格,玉米的价格必须调整至正常区间。所以最低下降为每公斤1.86元,即下降了2.68-1.86=0.82(元)。因为每投放100吨,价格下降0.05元,所以投放玉米的数量不能超过0.82÷0.05×100=1640(吨)。故选D。107、12,27,72,(),612
A、108
B、188
C、207
D、256
【答案】:答案:C
解析:(第一项-3)×3=第二项,(72-3)×3=(207),(207-3)×3=612。故选C。108、2,3,6,15,()
A、25
B、36
C、42
D、64
【答案】:答案:C
解析:相邻两项间做差。做差后得到的数为1,3,9;容易观察出这是一个等比数列,所以做差数列的下一项为27,则答案为15+27=42。故选C。109、1/5,1/3,3/7,1/2,()
A、5/9
B、1/6
C、6
D、3/5
【答案】:答案:A
解析:1/3写成2/6,1/2写成4/8,分子分母均是公差为1的等差数列。故选A。110、祖父今年65岁,3个孙子的年龄分别是15岁、13岁与9岁,问多少年后3个孙子的年龄之和等于祖父的年龄?()
A、23
B、14
C、25
D、16
【答案】:答案:B
解析:设n年后3个孙子的年龄之和等于祖父的年龄,可列方程:65+n=(15+n)+(13+n)+(9+n),解得n=14。故选B。111、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?()
A、17.25
B、21
C、21.33
D、24
【答案】:答案:B
解析:总费用一定,要使两个月的用水总量最多,需尽量使用低价水。先将两个月4元/吨的额度用完,花费4×5×2=40(元);再将6元/吨的额度用完,花费6×5×2=60(元)。由两个月共交水费108元可知,还剩108-40-60=8(元),可购买1吨单价为8元/吨的水。该户居民这两个月用水总量最多为5×2+5×2+1=21(吨)。故选B。112、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?()
A、17.25
B、21
C、21.33
D、24
【答案】:答案:B
解析:总费用一定,要使两个月的用水总量最多,需尽量使用低价水。先将两个月4元/吨的额度用完,花费4×5×2=40(元);再将6元/吨的额度用完,花费6×5×2=60(元)。由两个月共交水费108元可知,还剩108-40-60=8(元),可购买1吨单价为8元/吨的水。该户居民这两个月用水总量最多为5×2+5×2+1=21(吨)。故选B。113、-1,3,-3,-3,-9,()
A、-9
B、-4
C、-14
D、-45
【答案】:答案:D
解析:题干倍数关系明显,考虑作商。后项除以前项得到新数列:-3、-1、1、3,新数列为公差是2的等差数列,则新数列的下一项应为5,所求项为:-9×5=-45。故选D。114、130,68,30,(),2
A、11
B、12
C、10
D、9
【答案】:答案:C
解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故选C。115、一艘轮船从甲地到乙地每小时航行30千米,然后按原路返回,若想往返的平均速度为每小时40千米,则返回时每小时航行()千米。
A、80
B、75
C、60
D、96
【答案】:答案:C
解析:设甲乙两地的距离为1,则轮船从甲地到乙地所用的时间为1/30,如果往返的平均速度为40千米,则往返一次所用的时间为2/40,那么从乙地返回甲地所用时间为2/40-1/30=1/60,所以返回时的速度为每小时1/(1/60)=60千米。故选C。116、145,120,101,80,65,()
A、48
B、49
C、50
D、51
【答案】:答案:A
解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇数项,每项等于首项为12,公差为-2的平方加1;偶数项,每项等于首项为11,公差为-2的平方减1,即所填数字为72-1=48。故选A。117、小孙的口袋里有四颗糖,一颗巧克力味的,一颗苹果味的,两颗牛奶味的。小孙任意从口袋里取出两颗糖,他看了看后说,其中一颗是牛奶味的。问小孙取出的另一颗糖也是牛奶味的可能性(概率)是多少?()
A、1/3
B、1/4
C、1/5
D、1/6
【答案】:答案:C
解析:两颗都是牛奶味的糖只有一种情况,而其中至少一颗是牛奶味的糖共有5种情况:(牛奶味1、苹果味),(牛奶味1、巧克力味),(牛奶味2、苹果味),(牛奶味2、巧克力味),(牛奶味1、牛奶味2)。因此取出的另一颗糖也是牛奶味的概率为1/5。故选C。118、甲、乙和丙三种不同浓度、不同规格的酒精溶液,每瓶重量分别为3公斤、7公斤和9公斤,如果将甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,得到的酒精浓度分别为50%,50%和60%。如果将三种酒精合各一瓶混合,得到的酒精中要加入多少公斤纯净水后,其浓度正好是50%?()
A、1
B、1.3
C、1.6
D、1.9
【答案】:答案:C
解析:甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,相当于两瓶甲、两瓶乙、两瓶丙混合,前两种浓度都是50%,所以只需要加入适量水使得乙丙混合浓度由60%变为50%即可。设加水x,可将浓度为60%的酒精溶液溶度变为50%,即,解得x=3.2(公斤)。此时甲乙,甲丙和乙丙溶液各一瓶混合后浓度必然为50%。若甲、乙和丙各一瓶混合时浓度仍然为50%,则需加水为(公斤)。故选C。119、接受采访的100个大学生中,88人有手机,76人有电脑,其中有手机没电脑的共15人,则这100个学生中有电脑但没手机的共有多少人?()
A、25
B、15
C、5
D、3
【答案】:答案:D
解析:根据有手机没电脑共15人,可得既有手机又有电脑(①部分)的人数为88-15=73人,则有电脑但没手机(②部分)的人数为76-73=3人。故选D。120、1,1,2,8,64,()
A、1024
B、1280
C、512
D、128
【答案】:答案:A
解析:后一项除以前一项得1、2、4、8、(16),构成公比为2的等比数列,64×16=(1024)。故选B。121、某商店以5元/斤的价格购入一批蔬菜,上午以8元/斤的价格卖出总进货量的60%,中午以上午售出价的8折卖出总进货量的20%,下午以中午售出价的一半卖出剩余货量的一半,最后获利210元。则该商店一共购入多少斤蔬菜?()
A、140
B、150
C、160
D、180
【答案】:答案:B
解析:赋值购进的量为10斤,上午以8元/斤的价格卖出6斤,中午以6.4元/斤的价格卖出2斤,下午以3.2元/斤的价格卖出1斤,总收入=8×6+6.4×2+3.2×1=64元,总利润=64-5×10=14元,实际购入(210/14)×10=150斤。故选B。122、187,259,448,583,754,()
A、847
B、862
C、915
D、944
【答案】:答案:B
解析:各项数字和均为16。故选B。123、44,52,59,73,83,94,()
A、107
B、101
C、105
D、113
【答案】:答案:A
解析:每相邻的两项作差,得到8,7,14,10,11,每一个差是原数列中前一项个位数与十位数字的和,即8=4+4,7=5+2,14=5+9,10=7+3,11=8+3,所以9+4=13,所以未知项为13+94=107。故选A。124、a除以5余1,b除以5余4,如果3a>b,那么3a-b除以5余几?()
A、1
B、2
C、3
D、4
【答案】:答案:D
解析:a除以5余1,假设a=6;b除以5余4,假设b=9,符合3a>b。故3a-b=18-9=9,9除以5余4。故选D。125、张老师家四代同堂,且从父亲、张老师、儿子到孙子,每两代人的年龄差相同。5年前张老师父亲的年龄是儿子的3倍,8年后张老师的年龄是孙子的5倍。问今年四个人的年龄之和为()。
A、168岁
B、172岁
C、176岁
D、180岁
【答案】:答案:C
解析:父亲、张老师、儿子、孙子每两代人年龄差相同,设此年龄差为d,则父亲为(儿+2d),张老师为 (儿+d),孙子为(儿-d),因此四人年龄总和为(4儿+2d)。由5年前张老师父亲年龄是儿子的3倍即比儿子大2倍,即2d=2(儿-5)①;由8年后张老师年龄是孙子的5倍即比孙子大4倍即2d=4(儿-d+8)②;由①②可得儿=31,d=26,因此四人年龄总和为4儿+2d=4×31+2×26=176(岁)。故选C。126、1,2,3,6,12,24,()
A、48
B、45
C、36
D、32
【答案】:答案:A
解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N项=第N-1项+…+第一项,即所填数字为1+2+3+6+12+24=48。故选A。127、41,59,32,68,72,()
A、28
B、36
C、40
D、48
【答案】:答案:A
解析:两两分组得到(41,59),(32,68),(72,()),发现组内做和均为100。故选A。128、1,6,5,7,2,8,6,9,()
A、1
B、2
C、3
D、4
【答案】:答案:C
解析:本题为隔项递推数列,存在关系:第三项=第二项-第一项,第五项=第四项-第三项,……因此未知项为9-6=3。故选C。129、102,314,526,()
A、624
B、738
C、809
D、849
【答案】:答案:B
解析:314-102=212,526-314=212。后一项-前一项=212,即所填数字为536+212=738。故选B。130、甲、乙、丙、丁四人开展羽毛球比赛,首轮每人需和另外3人各比1场,获胜2场及以上者进入下一轮,否则淘汰。甲胜乙、丙、丁的概率分别为70%、50%、40%,问甲首轮遭淘汰的概率是多少?()
A、42.5%
B、45%
C、47.5%
D、48%
【答案】:答案:B
解析:获胜2场及以上者进入下一轮,甲首轮遭淘汰,则甲输了2场或者3场。分别枚举如下:(1)甲输三场的概率为30%×50%×60%=9%;(2)甲输两场有三种可能:①赢乙输丙丁,概率为70%×50%×60%=21%;②赢丙输乙丁,概率为30%×50%×60%=9%;③赢丁输乙丙,概率为30%×50%×40%=6%。甲首轮遭淘汰的概率为9%+21%+9%+6%=45%。故选B。131、13×99+135×999+1357×9999的值是()。
A、13507495
B、13574795
C、13704675
D、13704795
【答案】:答案:D
解析:原式=13×(100-1)+135×(1000-1)+1357×(10000-1)=1300+135000+13570000-(13+135+1357)=13704795。故选D。132、7.1,8.6,14.2,16.12,28.4,()
A、32.24
B、30.4
C、32.4
D、30.24
【答案】:答案:A
解析:奇数项依次为:7.1、14.2、28.4,是公比为2的等比数列;偶数项依次为:8.6、16.12,是公比为2的等比数列,即所填数字为16.12×2=32.24。故选A。133、2,11,32,()
A、56
B、42
C、71
D、134
【答案】:答案:C
解析:观察题干数列可得:2=13+1,11=23+3,32=33+5,()=43+7。故括号处应为71。故选C。134、12,23,35,47,511,()
A、613
B、612
C、611
D、610
【答案】:答案:A
解析:数位数列,各项首位数字“1,2,3,4,5,(6)”构成等差数列,其余数字“2,3,5,7,11,(13)”构成质数数列。因此,未知项为613。故选A。135、20/9,4/3,7/9,4/9,1/4,()
A、3/7
B、5/12
C、5/36
D、7/36
【答案】:答案:C
解析:20/9,4/3,7/9,4/9,1/4,(5/36)=>80/36,48/36,28/36,16/36,9/36,5/36;分母36,36,36,36,36,36等差;分子80,48,28,16,9,5三级等差。故选C。136、从A地到B地为上坡路。自行车选手从A地出发按A-B-A-B的路线行进,全程平均速度为从B地出发,按B-A-B-A的路线行进的全程平均速度的4/5,如自行车选手在上坡路与下坡路上分别以固定速度匀速骑行,问他上坡的速度是下坡速度的()。
A、1/2
B、1/3
C、2/3
D、3/5
【答案】:答案:A
解析:S=VT,当S一定的时候,VT成反比,两次行程的平均速度之比是4:5,故两次行程所用时间之比T1:T2=5:4。设一个下坡的时间是1,一个上坡的时间是n,则上坡速度是下坡速度的1/n。A-B-A-B的过程经历了2个上坡和1个下坡,则T1=2n+1;B-A-B-A的过程经历了2个下坡和1个上坡,则T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故选A。137、甲、乙两人在一条400米的环形跑道上从相距200米的位置出发,同向匀速跑步。当甲第三次追上乙的时候,乙跑了2000米。问甲的速度是乙的多少倍?()
A、1.2
B、1.5
C、1.6
D、2.0
【答案】:答案:B
解析:环形同点同向出发每追上一次,甲比乙多跑一圈。第一次由于是不同起点,甲比乙多跑原来的差距200米;之后两次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,时间相同,则速度比与路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故选B。138、张大伯卖白菜,开始定价是每千克5角钱,一点都卖不出去,后来每千克降低了几分钱,全部白菜很快卖了出去,一共收入22.26元,则每千克降低了几分钱?
A、3
B、4
C、6
D、8
【答案】:答案:D
解析:代入法,只有降8分时收入才能被价格整除。(2226=2×3×7×53=42×53)。故选D。139、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故选C。140、1,7,8,57,()
A、123
B、122
C、121
D、120
【答案】:答案:C
解析:12+7=8,72+8=57,82+57=121。故选C。141、有苹果若干个,若把其换成桔子,则多换5个;若把其换成菠萝,则少掉7个,已知每个桔子4角9分钱,每个菠萝7角钱,每个苹果的单价是多少?()
A、5角
B、5角8分
C、5角6分
D、5角4分
【答案】:答案:C
解析:此题可理解为:把苹果全部卖掉,得到钱若干,若用这些钱买成同样数量的桔子,则剩下49×5=245分,若用这些钱买成同样数量的菠萝,则缺少70×7=490分,所以苹果个数=(245+490)÷(70-49)=35个,苹果总价=49×35+49×5=1960分,每个苹果单价=1960÷35=56分=5角6分。故选C。142、水面上有三艘同向行驶的轮船,其中甲船的时速为63公里,乙、丙两船的时速均为60公里,但由于故障,丙船每连续行驶30分钟后必须停船2分钟。早上10点,三船到达同一位置,问1小时后,甲、丙两船最多相距多少公里?()
A、5
B、7
C、9
D、11
【答案】:答案:B
解析:1小时内,甲船行驶了63公里,丙船最多停车4分钟,即行驶56分钟,行驶路程为56公里。故最多相距7公里。故选B。143、2,3,10,23,()
A、35
B、42
C、68
D、79
【答案】:答案:B
解析:相邻两项后一项减前一项,3-2=1,10-3=7,13-10=13,42-23=19,是一个公差为6的等差数列,即所填数字为23+19=42。故选B。144、1,1,2,6,24,()
A、11
B、50
C、80
D、120
【答案】:答案:D
解析:依次将相邻两个数中后一个数除以前一个数得1,2,3,4,为连续自然数列,即所填数字为24×5=120。故选D。145、某小区有40%的住户订阅日报,有15%的住户同时订阅日报和时报,至少有75%的住户至少订阅两种报纸中的一种,问订阅时报的比例至少为多少?()
A、35%
B、50%
C、55%
D、60%
【答案】:答案:B
解析:设订阅时报的住户为x,至少订阅一种报纸的人数为40%+x-15%。由至少75%的住户至少订阅两种报纸中的一种得,40%+x-15%≥75%,解得x≥50%。故选B。146、2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年工业地产有偿转让协议
- 2024年度南京二手房交易合同
- 2024年度水果交易合同模板
- 【初中生物】病毒教学课件2024-2025学年人教版生物七年级上册
- 2024年度法律服务委托合同
- 2024年度工程监理合同标的及服务内容具体描述
- 2024年工程劳务分包补充协议
- 2024个人向公司借款合同范本(简单版)
- 2024冷却塔填料生产工艺优化合同
- 2024年度CFG桩基工程水土保持合同
- (完整版)四年级语文培优辅差记录表
- 国家开放大学《监督学》形考任务(1-4)试题解析和答案
- 不断把人民对美好生活的向往变为现实PPT实现人民对美好生活向往的路径PPT课件(带内容)
- DB43T 2428-2022 水利工程管理与保护范围划定技术规范
- GB/T 39968-2021建筑用通风百叶窗技术要求
- GB/T 35694-2017光伏发电站安全规程
- GB/T 1771-2007色漆和清漆耐中性盐雾性能的测定
- 内科医保入院指征
- 美济礁 仁爱礁
- 茶文化与茶健康教学课件
- 问诊及体格检查课件
评论
0/150
提交评论