数量关系例题参考答案_第1页
数量关系例题参考答案_第2页
数量关系例题参考答案_第3页
数量关系例题参考答案_第4页
数量关系例题参考答案_第5页
已阅读5页,还剩67页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数量关系例题第一部分单选题(200题)1、一件商品相继两次分别按折扣率为10%和20%进行折扣,已知折扣后的售价为540元,那么折扣前的售价为()。

A、600元

B、680元

C、720元

D、750元

【答案】:答案:D

解析:设原售价为x元,利用“折扣后售价为540元”得x(1-10%)(1-20%)=540。解得x=750。故选D。2、某单位组织工会活动,30名员工自愿参加做游戏。游戏规则:按1~30号编号并报数,第一次报数后,单号全部站出来,然后每次余下的人中第一个开始站出来,隔一人站出来一个人。最后站出来的人给大家唱首歌。那么给大家唱歌的员工编号是()。

A、14

B、16

C、18

D、20

【答案】:答案:B

解析:第一次报数后,单号全部站出来,剩余号码为2、4、6、8、10······30,均为2的倍数;每次余下的人中第一个开始站出来,隔一人站出来一个人,剩余号码为4、8、12、16、20、24、28,均为4的倍数;再从余下的号码中第一个人开始站出来,隔一个人站出来一个人,剩余号码为8、16、24,均为8的倍数;重复上一次的步骤,剩余16号,为16的倍数。1—30中16的倍数只有16。故选B。3、2,3,10,15,26,35,()

A、40

B、45

C、50

D、55

【答案】:答案:C

解析:2=1平方+1,3=2平方-1,10=3平方+1,15=4平方-1,26=5平方+1,35=6平方-1,问号=7平方+1,问号=50。故选C。4、某水库共有10个泄洪闸,当10个泄洪闸全部打开时,8小时可将水位由警戒水位降至安全水位;只打开6个泄洪闸时,这个过程为24个小时,如水库每小时的入库量稳定,问如果打开8个泄洪闸时,需要多少小时可将水位降至安全水位?()

A、10

B、12

C、14

D、16

【答案】:答案:B

解析:设水库每小时的入库量为x。根据题意可列方程(10-x)8=(6-x)24,解得x=4,故水库警戒水位至安全水位的容量为(10-4)×8=48;设打开8个泄洪闸需t小时可将水位降至安全水位;则48=(8-4)t,解得t=12。故选B。5、1,1,2,6,24,()

A、11

B、50

C、80

D、120

【答案】:答案:D

解析:依次将相邻两个数中后一个数除以前一个数得1,2,3,4,为连续自然数列,即所填数字为24×5=120。故选D。6、-2,1,31,70,112,()

A、154

B、155

C、256

D、280

【答案】:答案:B

解析:依次将相邻两项做差得3、30、39、42,再次做差得27、9、3,是公比为1/3的等比数列,即所填数字为(3÷3)+42+112=155。故选B。7、2,6,13,39,15,45,23,()

A、46

B、66

C、68

D、69

【答案】:答案:D

解析:6=2×3,39=13×3,45=15×3。两个数为一组,每组中的第二个数是第一个数的三倍,即所填数字为23×3=69。故选D。8、-7,0,1,2,9,()

A、42

B、18

C、24

D、28

【答案】:答案:D

解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1。故选D。9、A、B、C三个试管中各盛有10克、20克、30克水,把某种浓度的盐水10克倒入A中,充分混合后从A中取出10克倒入B中,再充分混合后从B中取出10克倒入C中,最后得到C中盐水的浓度为0.5%。则开始倒入试管A中的盐水浓度是多少?()

A、12%

B、15%

C、18%

D、20%

【答案】:答案:A

解析:C中含盐量为(30+10)×0.5%=0.2克,即从B中取出的10克中含盐0.2克,则B的浓度为0.2÷10=2%,进而求出B中含盐量为(20+10)×2%=0.6克,即从A中取出的10克中含盐0.6克,可得A的浓度为0.6÷10=6%,进一步得出A中含盐量为(10+10)×6%=1.2克,故开始倒入A中的盐水浓度为1.2÷10=12%。故选A。10、一艘轮船从甲地到乙地每小时航行30千米,然后按原路返回,若想往返的平均速度为每小时40千米,则返回时每小时航行()千米。

A、80

B、75

C、60

D、96

【答案】:答案:C

解析:设甲乙两地的距离为1,则轮船从甲地到乙地所用的时间为1/30,如果往返的平均速度为40千米,则往返一次所用的时间为2/40,那么从乙地返回甲地所用时间为2/40-1/30=1/60,所以返回时的速度为每小时1/(1/60)=60千米。故选C。11、0,1,3,10,()

A、101

B、102

C、103

D、104

【答案】:答案:B

解析:思路一:0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102。思路二:0(第一项)2+1=1(第二项)12+2=332+1=10102+2=102,其中所加的数呈1,2,1,2规律。思路三:各项除以3,取余数=>0,1,0,1,0,奇数项都能被3整除,偶数项除3余1。故选B。12、-1,3,-3,-3,-9,()

A、-9

B、-4

C、-14

D、-45

【答案】:答案:D

解析:题干倍数关系明显,考虑作商。后项除以前项得到新数列:-3、-1、1、3,新数列为公差是2的等差数列,则新数列的下一项应为5,所求项为:-9×5=-45。故选D。13、甲、乙和丙三种不同浓度、不同规格的酒精溶液,每瓶重量分别为3公斤、7公斤和9公斤,如果将甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,得到的酒精浓度分别为50%,50%和60%。如果将三种酒精合各一瓶混合,得到的酒精中要加入多少公斤纯净水后,其浓度正好是50%?()

A、1

B、1.3

C、1.6

D、1.9

【答案】:答案:C

解析:甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,相当于两瓶甲、两瓶乙、两瓶丙混合,前两种浓度都是50%,所以只需要加入适量水使得乙丙混合浓度由60%变为50%即可。设加水x,可将浓度为60%的酒精溶液溶度变为50%,即,解得x=3.2(公斤)。此时甲乙,甲丙和乙丙溶液各一瓶混合后浓度必然为50%。若甲、乙和丙各一瓶混合时浓度仍然为50%,则需加水为(公斤)。故选C。14、某饮料店有纯果汁(即浓度为100%)10千克,浓度为30%的浓缩还原果汁20千克。若取纯果汁、浓缩还原果汁各10千克倒入10千克纯净水中,再倒入10千克的浓缩还原果汁,则得到的果汁浓度为多少。()

A、40%

B、37.5%

C、35%

D、30%

【答案】:答案:A

解析:根据题干可得,一共倒入纯果汁(即浓度为100%)10千克,纯净水10千克,浓度为30%的浓缩还原果汁20千克。可知最终溶液的量为10+10+20=40(千克),最终溶质为10+20×30%=16(千克)。则最终果汁浓度=16÷40×100%=40%。故选A。15、1,2,3,6,12,24,()

A、48

B、45

C、36

D、32

【答案】:答案:A

解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N项=第N-1项+…+第一项,即所填数字为1+2+3+6+12+24=48。故选A。16、130,68,30,(),2

A、11

B、12

C、10

D、9

【答案】:答案:C

解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故选C。17、2,3,6,18,108,()

A、1944

B、1620

C、1296

D、1728

【答案】:答案:A

解析:2×3=6,3×6=18,6×18=108,……前两项相乘等于下一项,则所求项为18×108,尾数为4。故选A。18、修一条公路,甲工程队单独做需要40天,乙工程队单独做需要24天。现在两队合作,同时从两端开工,在距中点750米处两队相遇。那么这条公路长多少米?()

A、3750

B、3000

C、4000

D、6000

【答案】:答案:D

解析:甲乙效率之比=24:40=3:5,完成的任务量之比3:5、相差2份对应对应750×2=1500米,总任务量8份对应1500×4=6000米。故选D。19、为帮助果农解决销路,某企业年底买了一批水果,平均发给每部门若干筐之后还多了12筐,如果再买进8筐则每个部门可分得10筐,则这批水果共有()筐。

A、192

B、198

C、200

D、212

【答案】:答案:A

解析:由于再买进8筐则每个部门可分得10筐,则总筐数加8应能被10整除,排除B、C。将A项代入题目,可得部门数为(192+8)÷10=20(个),则原来平均发给每部门(192-12)÷20=9(筐),水果筐数为整数解,符合题意。故选A。20、3,4,10,33,136,()

A、685

B、424

C、314

D、149

【答案】:答案:A

解析:4=(3+1)×1,10=(4+1)×2,33=(10+1)×3,136=(33+1)×4,an=(an-1+1)×(n-1)(n≥2),即所填数字应为(136+1)×5=685。故选A。21、某校二年级全部共3个班的学生排队.每排4人,5人或6人,最后一排都只有2人.这个学校二年级有()名学生。

A、120

B、122

C、121

D、123

【答案】:答案:B

解析:由题意知,学生数除以4、5、6均余2,由代入法可以得到,只有B项满足条件。22、在某城市中,有60%的家庭订阅某种日报,有85%的家庭有电视机。假定这两个事件是独立的,今随机抽出一个家庭,所抽家庭既订阅该种日报又有电视机的概率是()。

A、0.09

B、0.25

C、0.36

D、0.51

【答案】:答案:D

解析:由于是独立重复试验,故既订阅该中日报又有电视机的概率是60%×85%=51%。故选D。23、在一次知识竞赛中,甲、乙两单位平均分为85分,甲单位得分比乙单位高10分,则乙单位得分为()分。

A、88

B、85

C、80

D、75

【答案】:答案:C

解析:根据“甲、乙平均分为85分”,可得总分为85×2=170(分)。设乙得分为x,那么甲得分为x+10,由题意有x+x+10=170,解得x=80。故选C。24、2,7,14,21,294,()

A、28

B、35

C、273

D、315

【答案】:答案:D

解析:21=7+14,14=2×7,294=14×21,为两项相加、相乘交替得到后-项,即所填数字为21+294=315。故选D。25、0,6,24,60,()

A、70

B、80

C、100

D、120

【答案】:答案:D

解析:0=0×1×2,6=1×2×3,24=2×3×4,60=3×4×5,()=4×5×6=120。另解,0=13-1,6=23-2,24=33-3,60=43-4,()=53-5=120。故选D。26、一旅行团共有50位游客到某地旅游,去A景点的游客有35位,去B景点的游客有32位,去C景点的游客有27位,去A、B景点的游客有20位,去B、C景点的游客有15位,三个景点都去的游客有8位,有2位游客去完一个景点后先行离团,还有1位游客三个景点都没去。那么,50位游客中有多少位恰好去了两个景点?()

A、29

B、31

C、35

D、37

【答案】:答案:A

解析:设去两个景点的人数为y,根据三集合非标准型公式可得:35+32+27-y-2×8=50-1,解得y=29。故选A。27、6,3,5,13,2,63,()

A、-36

B、-37

C、-38

D、-39

【答案】:答案:B

解析:6×3-5=13,3×5-13=2,5×13-2=63,第四项=第一项×第二项-第三项,即所填数字为13×2-63=-37。故选B。28、2,3,6,15,()

A、25

B、36

C、42

D、64

【答案】:答案:C

解析:相邻两项间做差。做差后得到的数为1,3,9;容易观察出这是一个等比数列,所以做差数列的下一项为27,则答案为15+27=42。故选C。29、226,264,316,388,()

A、236

B、386

C、486

D、566

【答案】:答案:C

解析:226=225+1=152+13,264=256+8=162+23,316=289+27=172+33,388=324+64=182+43,由此可以推知下一项应为192+53=486。故选C。30、某种细胞开始时有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个……按此规律,6小时后细胞存活的个数有多少?()

A、63

B、65

C、67

D、71

【答案】:答案:B

解析:1小时后细胞存活的个数为2×2-1=3;2小时后为2×3-1=5;3小时后为2×5-1=9……按此规律,n小时后细胞存活的个数为。故6小时后细胞存活的个数是(个)。故选B。31、某饮料店有纯果汁(即浓度为100%)10千克,浓度为30%的浓缩还原果汁20千克。若取纯果汁、浓缩还原果汁各10千克倒入10千克纯净水中,再倒入10千克的浓缩还原果汁,则得到的果汁浓度为多少。()

A、40%

B、37.5%

C、35%

D、30%

【答案】:答案:A

解析:根据题干可得,一共倒入纯果汁(即浓度为100%)10千克,纯净水10千克,浓度为30%的浓缩还原果汁20千克。可知最终溶液的量为10+10+20=40(千克),最终溶质为10+20×30%=16(千克)。则最终果汁浓度=16÷40×100%=40%。故选A。32、某班有56名学生,每人都参加了a、b、c、d、e五个兴趣班中的一个。已知有27人参加a兴趣班,参加b兴趣班的人数第二多,参加c、d兴趣班的人数相同,e兴趣班的参加人数最少,只有6人,问参加b兴趣班的学生有多少个?()

A、7个

B、8个

C、9个

D、10个

【答案】:答案:C

解析:设b班人数为x,c、d班的人数均为y,由b班人数第二多,e班人数最少,可知各班人数关系为:27>x>y>6。该班有56名学生,56=27+x+y+y+6,即x+2y=23,其中2y是偶数,23为奇数,则x为奇数,排除B、D。代入A选项,当x=7时,y=8,则x<Y,不符合题意,排除。故选C。33、30个小朋友围成一圈玩传球游戏,每次球传给下一个小朋友需要1秒。当老师喊“转向”时,要改变传球方向。如果从小华开始传球,老师在游戏开始后的第16、31、49秒喊“转向”,那么在第多少秒时,球会重新回到小华手上?()

A、68

B、69

C、70

D、71

【答案】:答案:A

解析:设小华的位置为0号,按顺时针方向编号依次为0号、1号、2号、……、29号。小华以顺时针方向开始传球。①经过16秒,顺时针传到16号;②转向:经过15秒(31-16=15),逆时针传到1号;③转向:经过18秒(49-31=18),顺时针传到19号;④转向:经过19秒,逆时针传回到小华手中。在第49+19=68(秒)时,球会重新回到小华手上。故选A。34、12,27,72,(),612

A、108

B、188

C、207

D、256

【答案】:答案:C

解析:(第一项-3)×3=第二项,(72-3)×3=(207),(207-3)×3=612。故选C。35、4,5,7,9,13,15,()

A、17

B、19

C、18

D、20

【答案】:答案:B

解析:各项减2后为质数列,故下一项为17+2=19。故选B。36、-3,-2,5,24,61,()

A、122

B、156

C、240

D、348

【答案】:答案:A

解析:相邻两项逐差:因此,未知项=61+61=122。故选A。37、甲、乙两人在一条400米的环形跑道上从相距200米的位置出发,同向匀速跑步。当甲第三次追上乙的时候,乙跑了2000米。问甲的速度是乙的多少倍?()

A、1.2

B、1.5

C、1.6

D、2.0

【答案】:答案:B

解析:环形同点同向出发每追上一次,甲比乙多跑一圈。第一次由于是不同起点,甲比乙多跑原来的差距200米;之后两次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,时间相同,则速度比与路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故选B。38、8,10,14,18,()

A、24

B、32

C、26

D、20

【答案】:答案:C

解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故选C。39、假设地球上新生成的资源的增长速度是一定的,照此推算,地球上的资源可供110亿人生活90年,或者可供90亿人生活210年。为了使人类能够不断繁衍,那么地球最多能养活多少亿人?()

A、70

B、75

C、80

D、100

【答案】:答案:B

解析:设地球的原始资源可供x亿人生存一年,每年增长的资源可供y亿人生存一年,即x+90y=90×110,x+210y=210×90,两式联立得y=75,为了使人类能够不断繁衍,那么地球最多能养活75亿人。故选B。40、-1,3,-3,-3,-9,()

A、-9

B、-4

C、-14

D、-45

【答案】:答案:D

解析:题干倍数关系明显,考虑作商。后项除以前项得到新数列:-3、-1、1、3,新数列为公差是2的等差数列,则新数列的下一项应为5,所求项为:-9×5=-45。故选D。41、甲乙两人需托运行李。托运收费标准为10kg以下6元/kg,超出10kg部分每公斤收费标准略低一些。已知甲乙两人托运费分别为109.5元、78元,甲的行李比乙重了50%。那么,超出10kg部分每公斤收费标准比10kg以内的低了()元。

A.1.5

B.2.5

C.3.5

D.4.5

【答案】:答案:A

解析:解析一:分段计费问题,设乙的行李超出的重量为x,即乙的行李总重量为10+x,则甲的行李重量为1.5×(10+x)。所以计算超出部分的重量为1.5×(10+x)-10=5+1.5x,超出金额为49.5元,所以按照比例,乙的行李超出了重量x,超出金额为18元,得到,解得x=4,所以超出部分单价为18÷4=4.5元。所以超出10公斤部分每公斤收费标准比10公斤以内的低了6-4.5=1.5元。解析二:盈亏思路,由于甲的行李重量比乙的多50%,所以分段看,乙超出部分为18元,所以对应的多50%的重量,应该是27元。则从甲超出的49.5元中扣除27元,还剩22.5元,这个钱数应该对应着10公斤的50%,即5公斤22.5元。所以每公斤超出部分为4.5元,超出10公斤部分每公斤收费标准比10公斤以内的低了6-4.5=1.5,得解。故正确答案为A。速解:靠常识解决,题目中说“超出10公斤部分每公斤收费标准略低一些。”所以选稍微低一点的42、6,6,12,36,()

A、124

B、140

C、144

D、164

【答案】:答案:C

解析:两两相除。6/6=1,6/12=1/2,12/36=1/3,下个数为36/()=1/4。故选C。43、[(9,6),42,(7,7)],[(7,3),40,(6,4)],[(8,2),(),(3,2)]

A、30

B、32

C、34

D、36

【答案】:答案:A

解析:(9-6)×(7+7)=42,(7-3)×(6+4)=40,每组中前两项的差×后两项的和=中间项。即所填数字为(8-2)×(3+2)=30。故选A。44、-7,0,1,2,9,()

A、42

B、18

C、24

D、28

【答案】:答案:D

解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1。故选D。45、2,3,10,23,()

A、35

B、42

C、68

D、79

【答案】:答案:B

解析:相邻两项后一项减前一项,3-2=1,10-3=7,13-10=13,42-23=19,是一个公差为6的等差数列,即所填数字为23+19=42。故选B。解析:设每个小长方形的长为x厘米、宽为y厘米,由题意可知,2x+(x+y)=88÷2,2x=3y,得x=12,y=8。即大长方形的面积为12×8×5=480平方厘米。故选C。46、2,7,13,20,25,31,()

A、35

B、36

C、37

D、38

【答案】:答案:D

解析:依次将相邻两个数中后一个数减去前一个数得5,6,7,5,6,为(5,6,7)三个数字组成的循环数列,即所填数字为31+7=38。故选D。47、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?()

A、15

B、13

C、10

D、8

【答案】:答案:B

解析:构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。故选B。48、小王登山,上山的速度是4km/h,到达山顶后原路返回,速度为6km/h,设山路长为9km,小王的平均速度为()km/h。

A、5

B、4.8

C、4.6

D、4.4

【答案】:答案:B

解析:平均速度为总路程除以总时间,即(2×9)÷(9÷4+9÷6)=4.8km/h。故选B。49、调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?()

A、101

B、175

C、188

D、200

【答案】:答案:C

解析:在435份调查问卷中有435×20%=87份没有写手机号;且手机号码后两位可能出现的情况一共10×10=100种,因此要保证一定能找到两个手机号码后两位相同的被调查者,至少需要抽取87+100+1=188份。故选C。50、145,120,101,80,65,()

A、48

B、49

C、50

D、51

【答案】:答案:A

解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇数项,每项等于首项为12,公差为-2的平方加1;偶数项,每项等于首项为11,公差为-2的平方减1,即所填数字为72-1=48。故选A。51、1,2,6,30,210,()

A、1890

B、2310

C、2520

D、2730

【答案】:答案:B

解析:2÷1=2,6÷2=3,30÷6=5,210÷30=7,相邻两项后一项除以前一项的商构成连续的质数列,即所填数字为210×11=2310。故选B。52、102,314,526,()

A、624

B、738

C、809

D、849

【答案】:答案:B

解析:314-102=212,526-314=212。后一项-前一项=212,即所填数字为536+212=738。故选B。53、3,2,2,5,17,()

A、24

B、36

C、44

D、56

【答案】:答案:D

解析:依次将相邻两个数中后一个数减去前一个数得-1,0,3,12,再次作差得1,3,9,构成公比为3的等比数列,即所填数字为9×3+12+17=56。故选D。54、41,59,32,68,72,()

A、28

B、36

C、40

D、48

【答案】:答案:A

解析:两两分组得到(41,59),(32,68),(72,()),发现组内做和均为100。故选A。55、甲、乙二人现在的年龄之和是一个完全平方数。7年前,他们各自的年龄都是完全平方数。再过多少年,他们的年龄之和又是完全平方数?()

A、20

B、18

C、16

D、9

【答案】:答案:B

解析:设七年前甲、乙的年龄分别为x、y岁,则七年后两人的年龄和为(x+7)+(y+7)=x+y+14,根据题意x、y、x+y+14均为完全平方数。100以内的平方数有1、4、9、16、25、36、49、64、81、100,其中1+49+14=64,1、49、64均为完全平方数,则七年前甲1岁,乙49岁,现在甲为8岁,乙为56岁,年龄和为64,甲乙年龄和为偶数,下一个平方数为偶数的是100,需要再过(100-64)÷2=18年。故选B。56、2,3,6,18,108,()

A、1944

B、1620

C、1296

D、1728

【答案】:答案:A

解析:2×3=6,3×6=18,6×18=108,……前两项相乘等于下一项,则所求项为18×108,尾数为4。故选A。57、2,5,9,19,37,75,()

A、140

B、142

C、146

D、149

【答案】:答案:C

解析:方法一:2×2+1=5,5×2-1=9,9×2+1=19,19×2-1=37,37×2+1=75,奇数项,每项乘以2加上1等于后一项;偶数项,每项乘以2减去1等于后一项,即所填数字为75×2-1=149。方法二:2×2+5=9,5×2+9=19,9×2+19=37,19×2+37=75,第三项=第一项×2+第二项,即所填数字为37×2+75=149。故选C。58、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,奇数项是2,偶数项构成公差为1的等差数列,即所填数字为6+(-1)=5。故选B。59、某木场有甲,乙,丙三位木匠师傅生产桌椅,甲每天能生产12张书桌或13把椅子;乙每天能生产9张书桌或12把椅子,丙每天能生产9张书桌或15把椅子,现在书桌和椅子要配套生产(每套一张书桌一把椅子),则7天内这三位师傅最多可以生产桌椅()套。

A、116

B、129

C、132

D、142

【答案】:答案:B

解析:将甲、乙、丙三位木匠师傅生产桌椅的效率列表如下,分析可知,甲生产书桌的相对效率最高,丙生产椅子的相对效率最高,则安排甲7天全部生产书桌,丙7天全部生产椅子,乙协助甲丙完成。甲7天可生产桌子12×7=84(张),丙7天可生产椅子15×7=105(把)。设乙生产书桌x天,则生产椅子(7-x)天,当生产的书桌数与椅子数相同时,获得套数最多,可列方程84+9x=105+12×(7-x),解得x=5,则乙可生产书桌9×5=45(张)。故7天内这三位师傅最多可以生产桌椅84+45=129(套)。故选B。60、6,6,12,36,()

A、124

B、140

C、144

D、164

【答案】:答案:C

解析:两两相除。6/6=1,6/12=1/2,12/36=1/3,下个数为36/()=1/4。故选C。61、为帮助果农解决销路,某企业年底买了一批水果,平均发给每部门若干筐之后还多了12筐,如果再买进8筐则每个部门可分得10筐,则这批水果共有()筐。

A、192

B、198

C、200

D、212

【答案】:答案:A

解析:由于再买进8筐则每个部门可分得10筐,则总筐数加8应能被10整除,排除B、C。将A项代入题目,可得部门数为(192+8)÷10=20(个),则原来平均发给每部门(192-12)÷20=9(筐),水果筐数为整数解,符合题意。故选A。62、7,21,14,21,63,(),63

A、35

B、42

C、40

D、56

【答案】:答案:B

解析:三个一组,7、21、14中第二个数是第一个数和第三个数的和,即所填数字为63-21=42。故选B。63、1,2,0,3,-1,4,()

A、-2

B、0

C、5

D、6

【答案】:答案:A

解析:奇数项1、0、-1、(-2)是公差为-1的等差数列;偶数项2、3、4是连续自然数。故选A。64、如果现在是18点整,那么分针旋转1990圈之后是几点钟?()

A、16

B、17

C、18

D、19

【答案】:答案:A

解析:分针旋转1圈为一小时,所以分针旋转12圈,时针旋转1圈,仍为18点整。由“1990÷12=165余10”可知,此时时钟表示的时间应是16点整。故选A。65、一只天平有7克、2克砝码各一个,如果需要将140克的盐分成50克、90克各一份,至少要称几次?()

A、六

B、五

C、四

D、三

【答案】:答案:D

解析:第一步,用天平将140g分成两份,每份70g;第二步,将其中的一份70g,平均分成两份35g;第三步,将砝码分别放在天平的两边,将35g盐放在天平两边至平衡,则每边为(35+7+2)÷2=22g,则砝码为2g的一边,盐就为20g,将其与第一步剩下的70g盐混合,得到90g,剩下的就是50g。即一共称了三次。故选D。66、1,11,21,31,()

A、39

B、49

C、41

D、51

【答案】:答案:C

解析:题中数列为公差为10的等差数列,故()=31+10=41。故选C。67、4/5,16/17,16/13,64/37,()

A、64/25

B、64/21

C、35/26

D、75/23

【答案】:答案:A

解析:已知数列可转化为:8/10,16/17,32/26,64/37,(),分子8,16,32,64,()是公比为2的等比数列,分母10,17,26,37,()构成二级等差数列。故第五项的分子应是128,分母是50,约分后为64/25。故选A。68、办公室小李发现写字台上的台历很久没有翻了,就一次翻了7张,这些台历的日期数加起来恰好是77,请问这一天是几号?()

A、14

B、15

C、16

D、17

【答案】:答案:B

解析:翻过去的7天的日期是公差为1的等差数列,和是77,根据等差数列求和公式,可知中位数=77÷7=11,7天中位数是第4天即第4天为11号。第七天是11+(7-4)×1=14号,可知今天是15号。故选B。69、8,6,-4,-54,()

A、-118

B、-192

C、-320

D、-304

【答案】:答案:D

解析:依次将相邻两个数中后一个数减去前一个数得-2,-10,-50,构成公比为5的等比数列,即所填数字为-54+(-250)=-304。故选D。70、1,7,8,57,()

A、123

B、122

C、121

D、120

【答案】:答案:C

解析:12+7=8,72+8=57,82+57=121。故选C。71、某收藏家有三个古董钟,时针都掉了,只剩下分针,而且都走得较快,每小时分别快2分钟、6分钟及12分钟。如果在中午将这三个钟的分针都调整指向钟面的12点位置,多少小时后这3个钟的分针会指在相同的分钟位置?

A.24

B.26

C.28

D.30

【答案】:答案:D

解析:由题意可得:假设每小时快2分钟、快6分钟、快12分钟的古董钟分别为A钟、B钟、C钟,则B钟与A钟速度差为分钟/小时,已知整个钟盘有60分钟,即经过小时,B钟的分针比A钟的分针恰好多走一圈,且此时两钟分针重合,同理,C钟与A钟速度差为分钟/小时,即经过小时,C钟的分针比A钟的分针恰好多走一圈,此时两钟分针重合,取6和15的最小公倍数30,即经过30小时,B钟的分针比A钟的分针恰好多走2圈,C钟的分针比A钟的分针恰好多走5圈,且此时三个分针处于同一个位置。故正确答案为D。72、2,7,14,21,294,()

A、28

B、35

C、273

D、315

【答案】:答案:D

解析:21=7+14,14=2×7,294=14×21,为两项相加、相乘交替得到后-项,即所填数字为21+294=315。故选D。73、甲、乙两人在一条400米的环形跑道上从相距200米的位置出发,同向匀速跑步。当甲第三次追上乙的时候,乙跑了2000米。问甲的速度是乙的多少倍?()

A、1.2

B、1.5

C、1.6

D、2.0

【答案】:答案:B

解析:环形同点同向出发每追上一次,甲比乙多跑一圈。第一次由于是不同起点,甲比乙多跑原来的差距200米;之后两次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,时间相同,则速度比与路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故选B。74、2/3,1/2,3/7,7/18,()

A、4/11

B、5/12

C、7/15

D、3/16

【答案】:答案:A

解析:4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4、5、6、7,接下来是8.分母是6、10、14、18,接下来是22。故选A。75、1,2,6,30,210,()

A、1890

B、2310

C、2520

D、2730

【答案】:答案:B

解析:2÷1=2,6÷2=3,30÷6=5,210÷30=7,相邻两项后一项除以前一项的商构成连续的质数列,即所填数字为210×11=2310。故选B。76、25与一个三位数相乘个位是0,与这个三位数相加有且只有一次进位,像这样的三位数总共有多少个? ()

A、48

B、126

C、174

D、180

【答案】:答案:C

解析:因为25与一个三位数相乘个位是0,所以这个三位数个位上的数是0、2、4、6、8。又因为与这个三位数相加有且只有一次进位,所以当个位是0、2、4时,十位必须是8或9,百位是1-8八个数都可以,这种情况有48(8乘2乘3等于48)个数满足条件;当个位是6或8时,十位可以是0、1、2、3、4、5、6七个数,百位是1-9九个数,这种情况有126(9乘7乘2等于126)个数满足条件;终上所述一共有174(48+126=174)个,即:像这样的三位数总共有174个。故选C。77、2,3,10,15,26,35,()

A、40

B、45

C、50

D、55

【答案】:答案:C

解析:2=1平方+1,3=2平方-1,10=3平方+1,15=4平方-1,26=5平方+1,35=6平方-1,问号=7平方+1,问号=50。故选C。78、甲种酒精有4升,乙种酒精有6升,混合成的酒精含酒精62%;如果两种酒精溶液一样多,混合成的酒精溶液含酒精61%,乙种酒精溶液含有纯酒精百分之几?()

A、56

B、66

C、58

D、64

【答案】:答案:B

解析:设甲种酒精浓度x%,乙种酒精浓度y%。那么,4×x%+6×y%=(4+6)×62%,x%+y%=2×61%,得x=56,y=66,即乙种酒精浓度为66%。故选B。79、某商店以5元/斤的价格购入一批蔬菜,上午以8元/斤的价格卖出总进货量的60%,中午以上午售出价的8折卖出总进货量的20%,下午以中午售出价的一半卖出剩余货量的一半,最后获利210元。则该商店一共购入多少斤蔬菜?()

A、140

B、150

C、160

D、180

【答案】:答案:B

解析:赋值购进的量为10斤,上午以8元/斤的价格卖出6斤,中午以6.4元/斤的价格卖出2斤,下午以3.2元/斤的价格卖出1斤,总收入=8×6+6.4×2+3.2×1=64元,总利润=64-5×10=14元,实际购入(210/14)×10=150斤。故选B。80、20/9,4/3,7/9,4/9,1/4,()

A、3/7

B、5/12

C、5/36

D、7/36

【答案】:答案:C

解析:20/9,4/3,7/9,4/9,1/4,(5/36)=>80/36,48/36,28/36,16/36,9/36,5/36;分母36,36,36,36,36,36等差;分子80,48,28,16,9,5三级等差。故选C。81、祖父今年65岁,3个孙子的年龄分别是15岁、13岁与9岁,问多少年后3个孙子的年龄之和等于祖父的年龄?()

A、23

B、14

C、25

D、16

【答案】:答案:B

解析:设n年后3个孙子的年龄之和等于祖父的年龄,可列方程:65+n=(15+n)+(13+n)+(9+n),解得n=14。故选B。82、8,9,18,23,30,()

A、33

B、36

C、41

D、48

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得1,9,5,7,再次作差得8,-4,2,构成公比为-0.5的等比数列,即所填数字为2×(-0.5)+7+30=36。故选B。83、5,12,24,36,52,()

A、58

B、62

C、68

D、72

【答案】:答案:C

解析:5=2+3,12=5+7,24=11+13,36=17+19,52=23+29,全是从小到大的质数和,所以下一个是31+37=68。故选C。84、90,85,81,78,()

A、75

B、74

C、76

D、73

【答案】:答案:C

解析:后项减去前项,可得-5、-4、-3、(-2),这是一个公差为1的等差数列,所以下一项为78-2=76。故选C。85、学校举行运动会,要求按照红、黄、绿、紫的颜色插彩旗于校门口,请问第58面旗是什么颜色?()

A、黄

B、红

C、绿

D、紫

【答案】:答案:A

解析:根据“按照红、黄、绿、紫”可知,四个颜色为一个周期,则58÷4=14...2,故第58面旗是14个周期后的第二面,即为黄色。故选A。86、-56,25,-2,7,4,()

A、3

B、-12

C、-24

D、5

【答案】:答案:D

解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)项-第N项=-3[第N项-第(N+1)项](N≥2),即所填数字为4-=5。故选D。87、要将浓度分别为20%和5%的A、B两种食盐水混合配成浓度为15%的食盐水900克,问5%的食盐水需要多少克?()

A、250

B、285

C、300

D、325

【答案】:答案:C

解析:设需要5%的食盐水x克,则需要20%的食盐水(900-x)克;根据混合后浓度为15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故选C。88、1,1,3,7,17,41,()

A、89

B、99

C、109

D、119

【答案】:答案:B

解析:第三项=第二项×2+第一项,99=41×2+17。故选B。89、甲乙两车早上分别同时从A、B两地出发驶向对方所在城市,在分别到达对方城市并各自花费1小时卸货后,立刻出发以原速返回出发地。甲车的速度为60千米/小时,乙车的速度为40千米/小时,两地之间相距480千米。问两车第二次相遇距离两车早上出发经过了多少个小时?()

A、13.4

B、14.4

C、15.4

D、16.4

【答案】:答案:C

解析:根据“分别同时从A.B两地出发”、“两车第二次相遇”,可知考查的是两端出发的多次相遇问题,公式为(v1+v2)t=(2n-1)S。代入数据得(60+40)t=(2×2-1)×480,解得t=14.4,由“各自花费一小时卸货”,故经过了14.4+1=15.4小时。故选C。90、5,12,24,36,52,()

A、58

B、62

C、68

D、72

【答案】:答案:C

解析:5=2+3,12=5+7,24=11+13,36=17+19,52=23+29,全是从小到大的质数和,所以下一个是31+37=68。故选C。91、-56,25,-2,7,4,()

A、3

B、-12

C、-24

D、5

【答案】:答案:D

解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)项-第N项=-3[第N项-第(N+1)项](N≥2),即所填数字为4-=5。故选D。92、A、B、C三个试管中各盛有10克、20克、30克水,把某种浓度的盐水10克倒入A中,充分混合后从A中取出10克倒入B中,再充分混合后从B中取出10克倒入C中,最后得到C中盐水的浓度为0.5%。则开始倒入试管A中的盐水浓度是多少?()

A、12%

B、15%

C、18%

D、20%

【答案】:答案:A

解析:C中含盐量为(30+10)×0.5%=0.2克,即从B中取出的10克中含盐0.2克,则B的浓度为0.2÷10=2%,进而求出B中含盐量为(20+10)×2%=0.6克,即从A中取出的10克中含盐0.6克,可得A的浓度为0.6÷10=6%,进一步得出A中含盐量为(10+10)×6%=1.2克,故开始倒入A中的盐水浓度为1.2÷10=12%。故选A。93、要将浓度分别为20%和5%的A、B两种食盐水混合配成浓度为15%的食盐水900克,问5%的食盐水需要多少克?()

A、250

B、285

C、300

D、325

【答案】:答案:C

解析:设需要5%的食盐水x克,则需要20%的食盐水(900-x)克;根据混合后浓度为15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故选C。94、13,14,16,21,(),76

A、23

B、35

C、27

D、22

【答案】:答案:B

解析:相连两项相减:1,2,5,();再减一次:1,3,9,27;()=14;21+14=35。故选B。95、118,199,226,(),238

A、228

B、230

C、232

D、235

【答案】:答案:D

解析:相邻两项后一项减前一项,199-118=81,226-199=27,235-226=9,238-235=3,是公比为的等比数列,即所填数字为238-3=226+9=235。故选D。96、-1,6,25,62,()

A、123

B、87

C、150

D、109

【答案】:答案:A

解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故选A。97、4,5,7,9,13,15,()

A、17

B、19

C、18

D、20

【答案】:答案:B

解析:各项减2后为质数列,故下一项为17+2=19。故选B。98、8,4,8,10,14,()

A、22

B、20

C、19

D、24

【答案】:答案:C

解析:题干数列为递推数列,规律为:8÷2+4=8,4÷2+8=10,8÷2+10=14,即第一项÷2+第二项=第三项,因此未知项为10÷2+14=19。故选C。99、133/256,125/64,117/16,()

A、109/4

B、103/2

C、109/6

D、115/8

【答案】:答案:A

解析:分子133、125、117、(109)是公差为-8的等差数列,分母256、64、16、(4)是公比为1/4的等比数列。故选A。100、有一只青蛙在井底,每天上爬10米,又下滑6米,这口井深20米,这只青蛙爬出井口至少需要多少天?()

A、2

B、3

C、4

D、5

【答案】:答案:C

解析:第一天青蛙爬了10-6=4米,距离井口20-4=16米;第二天爬了4+(10-6)=8米,距离井口20-8=12米;第三天爬了8+(10-6)=12米,距离井口20-12=8米<10米;第四天青蛙可以直接爬出井口。这只青蛙爬出井口至少要4天。故选C。101、1,2,9,64,()

A、250

B、425

C、625

D、650

【答案】:答案:C

解析:10,21,32,43,(54)=625。故选C。102、10,9,17,50,()

A、100

B、99

C、199

D、200

【答案】:答案:C

解析:10×1-1=9;9×2-1=17;17×3-1=50;50×4-1=199。故选C。103、有苹果若干个,若把其换成桔子,则多换5个;若把其换成菠萝,则少掉7个,已知每个桔子4角9分钱,每个菠萝7角钱,每个苹果的单价是多少?()

A、5角

B、5角8分

C、5角6分

D、5角4分

【答案】:答案:C

解析:此题可理解为:把苹果全部卖掉,得到钱若干,若用这些钱买成同样数量的桔子,则剩下49×5=245分,若用这些钱买成同样数量的菠萝,则缺少70×7=490分,所以苹果个数=(245+490)÷(70-49)=35个,苹果总价=49×35+49×5=1960分,每个苹果单价=1960÷35=56分=5角6分。故选C。104、21,27,40,61,94,148,()

A、239

B、242

C、246

D、252

【答案】:答案:A

解析:依次将相邻两项作差得6,13,21,33,54;二次作差得7,8,12,21;再次作差得12,22,32,是连续自然数的平方。即所填数字为42+21+54+148=239。故选A。105、在某企业,40%的员工有至少3年的工龄,16个员工有至少8年的工龄。如果90%的员工的工龄不足8年,则工龄至少3年但不足8年的员工有()人。

A、48

B、64

C、80

D、144

【答案】:答案:A

解析:由于不足8年工龄的员工占90%,则至少8年工龄的员工占1-90%=10%,可得员工总数为16÷10%=160(人),故工龄至少3年但不足8年的员工有160×40%-16=48(人)。故选A。106、2,6,30,210,2310,()

A、30160

B、30030

C、40300

D、32160

【答案】:答案:B

解析:依次将相邻两个数中后一个数除以前一个数得3,5,7,11,为一个质数数列,即所填数字为2310×13=30030。故选B。107、调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?()

A、101

B、175

C、188

D、200

【答案】:答案:C

解析:在435份调查问卷中有435×20%=87份没有写手机号;且手机号码后两位可能出现的情况一共10×10=100种,因此要保证一定能找到两个手机号码后两位相同的被调查者,至少需要抽取87+100+1=188份。故选C。108、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?()

A、15

B、13

C、10

D、8

【答案】:答案:B

解析:构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。故选B。109、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多少?()

A、256

B、486

C、556

D、376

【答案】:答案:B

解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不如将它换成2个3。因为2×2×2=8,而3×3=9。故拆分出的自然数中,至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为243×2=486。故选B。110、在列车平行轨道上,甲、乙两列火车相对开来。甲列火车长236米,每秒行38米;乙列火车长275米,已知这两列火车错车开过用了7秒钟,则乙列火车按这个速度通过长为2000米的隧道需要()秒钟。

A、65

B、70

C、75

D、80

【答案】:答案:A

解析:236+275=(38+v)×7,所以v=35,那么275+2000=35t,t=65,选A。111、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,为奇数项是2偶数项为公差为1的等差数列,即所填数字为6+(-1)=5。故选B。112、2,4,12,32,88,()

A、140

B、180

C、220

D、240

【答案】:答案:D

解析:12=2×(2+4),32=2×(4+12),88=2×(32+12),第三项=2×(第一项+第二项),即所填数字为2×(88+32)=240。故选D。113、1,3,2,6,11,19,()

A、24

B、36

C、29

D、38

【答案】:答案:B

解析:该数列为和数列,即前三项之和为第四项。故空缺处应为6+11+19=36。故选B。114、某快速反应部队运送救灾物资到灾区。飞机原计划每分钟飞行12千米,由于灾情危急,飞行速度提高到每分钟15千米,结果比原计划提前30分钟到达灾区,则机场到灾区的距离是多少千米?()

A、1600

B、1800

C、2050

D、2250

【答案】:答案:B

解析:设机场到灾区的距离为x,由每分钟飞行12千米可知,原飞行时间为;由每分钟15千米可知,现飞行时间为。根据比原计划提前30分钟,可得,解得x=1800(千米)。故选B。115、某农场有36台收割机,要收割完所有的麦子需要14天时间。现收割了7天后增加4台收割机,并通过技术改造使每台机器的效率提升,问收割完所有的麦子还需要几天。

A.3

B.4

C.5

D.6

【答案】:答案:D

解析:方法一:赋值法,赋值每台收割机每天的工作效率为1,则工作总量为36×14,剩下的36×7由36+4=40台收割机完成,技术改造后每台收割机效率为,故剩下需要的时间为。方法二:比例法。由题意,原有收割机36台,增加4台后变为40台,提高效率5%后相当于原先40×(1+5%)=42台收割机的工作效率。效率比为6∶7,故所有时间比为7∶6,还需6天即可完成。故正确答案为D。116、1,1,2,8,64,()

A、1024

B、1280

C、512

D、128

【答案】:答案:A

解析:后一项除以前一项得1、2、4、8、(16),构成公比为2的等比数列,64×16=(1024)。故选B。117、2,2,6,14,34,()

A、82

B、50

C、48

D、62

【答案】:答案:A

解析:2+2×2=6;2+6×2=14;6+14×2=34;14+34×2=82。故选A。118、一人上楼,边走边数台阶。从一楼走到四楼,共走了54级台阶。如果每层楼之间的台阶数相同,他一直要走到八楼,问他从一楼到八楼一共要走多少级台阶?()

A、126

B、120

C、114

D、108

【答案】:答案:A

解析:从一楼走到四楼,共走了54级台阶,而他实际走了3层楼的高度,所以每层楼的台阶数为54÷3=18级。他从一楼到八楼一共要走7层楼,因此共要走7×18=126级台阶。故选A。119、2,3,1,2,6,7,()

A、9

B、5

C、11

D、24

【答案】:答案:B

解析:依次将相隔两项做和2+1=3、3+2=5、1+6=7、2+7=9,是公差为2的等差数列。即所填数字为(9+2)-6=5。故选B。120、某木场有甲,乙,丙三位木匠师傅生产桌椅,甲每天能生产12张书桌或13把椅子;乙每天能生产9张书桌或12把椅子,丙每天能生产9张书桌或15把椅子,现在书桌和椅子要配套生产(每套一张书桌一把椅子),则7天内这三位师傅最多可以生产桌椅()套。

A、116

B、129

C、132

D、142

【答案】:答案:B

解析:将甲、乙、丙三位木匠师傅生产桌椅的效率列表如下,分析可知,甲生产书桌的相对效率最高,丙生产椅子的相对效率最高,则安排甲7天全部生产书桌,丙7天全部生产椅子,乙协助甲丙完成。甲7天可生产桌子12×7=84(张),丙7天可生产椅子15×7=105(把)。设乙生产书桌x天,则生产椅子(7-x)天,当生产的书桌数与椅子数相同时,获得套数最多,可列方程84+9x=105+12×(7-x),解得x=5,则乙可生产书桌9×5=45(张)。故7天内这三位师傅最多可以生产桌椅84+45=129(套)。故选B。121、在某城市中,有60%的家庭订阅某种日报,有85%的家庭有电视机。假定这两个事件是独立的,今随机抽出一个家庭,所抽家庭既订阅该种日报又有电视机的概率是()。

A、0.09

B、0.25

C、0.36

D、0.51

【答案】:答案:D

解析:由于是独立重复试验,故既订阅该中日报又有电视机的概率是60%×85%=51%。故选D。122、调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?()

A、101

B、175

C、188

D、200

【答案】:答案:C

解析:在435份调查问卷中有435×20%=87份没有写手机号;且手机号码后两位可能出现的情况一共10×10=100种,因此要保证一定能找到两个手机号码后两位相同的被调查者,至少需要抽取87+100+1=188份。故选C。123、一个四边形广场,它的四边长分别是60米、72米、96米、84米,现在四边上植树,四角需种树,而且每两棵树的间隔相等,那么,至少要种多少棵树?()

A、22

B、25

C、26

D、30

【答案】:答案:C

解析:根据四角需种树,且每两棵树的间隔相等可知,间隔距离应为四边边长的公约数;要使棵树至少,则间隔距离要尽量最大,公约数最大为12(60、72、96、84的最大公约数)。故棵数=段数=长度÷间距=(60+72+84+96)÷12=26(棵)。故选C。124、8,10,14,18,()

A、24

B、32

C、26

D、20

【答案】:答案:C

解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故选C。125、某商店以5元/斤的价格购入一批蔬菜,上午以8元/斤的价格卖出总进货量的60%,中午以上午售出价的8折卖出总进货量的20%,下午以中午售出价的一半卖出剩余货量的一半,最后获利210元。则该商店一共购入多少斤蔬菜?()

A、140

B、150

C、160

D、180

【答案】:答案:B

解析:赋值购进的量为10斤,上午以8元/斤的价格卖出6斤,中午以6.4元/斤的价格卖出2斤,下午以3.2元/斤的价格卖出1斤,总收入=8×6+6.4×2+3.2×1=64元,总利润=64-5×10=14元,实际购入(210/14)×10=150斤。故选B。126、在列车平行轨道上,甲、乙两列火车相对开来。甲列火车长236米,每秒行38米;乙列火车长275米,已知这两列火车错车开过用了7秒钟,则乙列火车按这个速度通过长为2000米的隧道需要()秒钟。

A、65

B、70

C、75

D、80

【答案】:答案:A

解析:236+275=(38+v)×7,所以v=35,那么275+2000=35t,t=65,选A。127、一条马路的两边各立着10盏电灯,现在为了节省用电,决定每边关掉3盏,但为了安全,道路起点和终点两边的灯必须是亮的,而且任意一边不能连续关掉两盏。问总共有多少种方案?()

A、120

B、320

C、400

D、420

【答案】:答案:C

解析:每一边7盏亮着的灯形成6个空位,把3盏熄灭的灯插进去,则共有=400种方案。故选C。128、2,1,2/3,1/2,()

A、3/4

B、1/4

C、2/5

D、5/6

【答案】:答案:C

解析:数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5。故选C。129、140支社区足球队参加全市社区足球淘汰赛,每一轮都要在未失败过的球队中抽签决定比赛对手,如上一轮未失败过的球队是奇数,则有一队不用比赛直接进人下—轮。问夺冠的球队至少要参加几场比赛? ()

A、3

B、4

C、5

D、6

【答案】:答案:B

解析:根据题意,如果是奇数队的话,有一队轮空,自动进入下一场。题目问冠军至少需要参加几场比赛,为了让冠军参加的场次尽可能的少,每次轮空自动进入下一场的都是冠军。整个比赛过程为:140-70-35-18-9-5-3-2-1,需要进行8轮,有4轮是轮空的。所以冠军至少需要进行4场比赛。故选B。130、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?()

A、17.25

B、21

C、21.33

D、24

【答案】:答案:B

解析:总费用一定,要使两个月的用水总量最多,需尽量使用低价水。先将两个月4元/吨的额度用完,花费4×5×2=40(元);再将6元/吨的额度用完,花费6×5×2=60(元)。由两个月共交水费108元可知,还剩108-40-60=8(元),可购买1吨单价为8元/吨的水。该户居民这两个月用水总量最多为5×2+5×2+1=21(吨)。故选B。131、7,7,9,17,43,()

A、119

B、117

C、123

D、121

【答案】:答案:C

解析:依次将相邻两项做差得0,2,10,26,再次做差得2,6,18。构成一个公比为3的等比数列,即所填数字为43+26+18×3=123。故选C。132、将所有由1、2、3、4组成且没有重复数字的四位数,按从小到大的顺序排列,则排在第12位的四位数是()。

A、3124

B、2341

C、2431

D、3142

【答案】:答案:C

解析:当千位数字是1时有=6种四位数,当千位数字是2时也有=6种四位数,因此排在第12位的就是千位数字为2的最大四位数,即2431。故选C。133、某小区有40%的住户订阅日报,有15%的住户同时订阅日报和时报,至少有75%的住户至少订阅两种报纸中的一种,问订阅时报的比例至少为多少?()

A、35%

B、50%

C、55%

D、60%

【答案】:答案:B

解析:设订阅时报的住户为x,至少订阅一种报纸的人数为40%+x-15%。由至少75%的住户至少订阅两种报纸中的一种得,40%+x-15%≥75%,解得x≥50%。故选B。134、甲、乙二人现在的年龄之和是一个完全平方数。7年前,他们各自的年龄都是完全平方数。再过多少年,他们的年龄之和又是完全平方数?()

A、20

B、18

C、16

D、9

【答案】:答案:B

解析:设七年前甲、乙的年龄分别为x、y岁,则七年后两人的年龄和为(x+7)+(y+7)=x+y+14,根据题意x、y、x+y+14均为完全平方数。100以内的平方数有1、4、9、16、25、36、49、64、81、100,其中1+49+14=64,1、49、64均为完全平方数,则七年前甲1岁,乙49岁,现在甲为8岁,乙为56岁,年龄和为64,甲乙年龄和为偶数,下一个平方数为偶数的是100,需要再过(100-64)÷2=18年。故选B。135、一条马路的两边各立着10盏电灯,现在为了节省用电,决定每边关掉3盏,但为了安全,道路起点和终点两边的灯必须是亮的,而且任意一边不能连续关掉两盏。问总共有多少种方案?()

A、120

B、320

C、400

D、420

【答案】:答案:C

解析:每一边7盏亮着的灯形成6个空位,把3盏熄灭的灯插进去,则共有=400种方案。故选C。136、有4堆木材,都堆成正三角形垛,层数分别为5,6,7,8层,那么共有木材()根。

A、110

B、100

C、120

D、130

【答案】:答案:B

解析:5层木材有1+2+3+4+5=15,6层木材有1+2+3+4+5+6=21,7层木材有1+2+3+4+5+6+7=28,8层木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故选B。137、84,12,48,30,39,()

A、23

B、36.5

C、34.5

D、43

【答案】:答案:C

解析:依次将相邻两个数中前一个数减去后一个数得72,-36,18,-9,构成公比为-0.5的等比数列,即所填数字为39-4.5=34.5。故选C。138、-1,6,25,62,()

A、123

B、87

C、150

D、109

【答案】:答案:A

解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故选A。139、6,9,10,14,17,21,27,()

A、28

B、29

C、30

D、31

【答案】:答案:C

解析:依次将奇数项做差得10-6=4、17-10=7、27-17=10,4、7、10构成公差为3的等差数列;又依次将偶数项做差得14-9=5、21-14=7,若加入9则5、7、9可构成公差为2的等差数列,即所填数字为21+9=30。故选C。140、甲、乙、丙三辆汽车分别从A地开往千里之外的B地。若乙比甲晚出发30分钟,则乙出发后2小时追上甲;若丙比乙晚出发20分钟,则丙出发后5小时追上乙。若甲出发10分钟后乙出发,当乙追上甲时,丙才出发,则丙追上甲所需时间是()。

A、110分钟

B、150分钟

C、127分钟

D、128分钟

【答案】:答案:B

解析:设甲、乙、丙三辆汽车的速度分别为x、y、z。由于甲行驶30分钟的路程,乙需要2小时才能追上,则30x=(y-x)×2×60,化简得x∶y=4∶5。又因乙行驶20分钟的路程,丙需要5小时才能追上,则20y=(z-y)×5×60,化简得y∶z=15∶16。所以三辆汽车的速度x∶y∶z=12∶15∶16。赋值甲、乙、丙的速度分别为12、15、16,甲出发10分钟后乙出发,则乙追上甲的时间为(分钟),故丙出发时甲已经行驶10+40=50(分钟),设丙追上甲所需时间是t分钟,可得方程12×50=(16-12)×t,解得t=150。故选B。141、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多少?()

A、256

B、486

C、556

D、376

【答案】:答案:B

解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不如将它换成2个3。因为2×2×2=8,而3×3=9。故拆分出的自然数中,至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为243×2=486。故选B。142、小孙的口袋里有四颗糖,一颗巧克力味的,一颗苹果味的,两颗牛奶味的。小孙任意从口袋里取出两颗糖,他看了看后说,其中一颗是牛奶味的。问小孙取出的另一颗糖也是牛奶味的可能性(概率)是多少?()

A、1/3

B、1/4

C、1/5

D、1/6

【答案】:答案:C

解析:两颗都是牛奶味的糖只有一种情况,而其中至少一颗是牛奶味的糖共有5种情况:(牛奶味1、苹果味),(牛奶味1、巧克力味),(牛奶味2、苹果味),(牛奶味2、巧克力味),(牛奶味1、牛奶味2)。因此取出的另一颗糖也是牛奶味的概率为1/5。故选C。143、2,3,6,18,108,()

A、1944

B、1620

C、1296

D、1728

【答案】:答案:A

解析:2×3=6,3×6=18,6×18=108,……前两项相乘等于下一项,则所求项为18×108,尾数为4。故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论