




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年四川省成都嘉祥外国语学校高一数学第二学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.向量,则()A. B.C.与的夹角为60° D.与的夹角为30°2.函数的图象如图所示,则y的表达式为()A. B.C. D.3.设,,是平面内共线的三个不同的点,点是,,所在直线外任意-点,且满足,若点在线段的延长线上,则()A., B., C. D.4.为数列的前n项和,若,则的值为()A.-7 B.-4 C.-2 D.05.直线x﹣y+2=0与圆x2+(y﹣1)2=4的位置关系是()A.相交 B.相切 C.相离 D.不确定6.已知是平面内两个互相垂直的向量,且,若向量满足,则的最大值是()A.1 B. C.3 D.7.如图,在正方体ABCD-A1B1C1D1中,E,F分别是C1D1,CC1的中点,则异面直线AE与BF所成角的余弦值为()A. B. C. D.8.已知,则的最小值是()A.2 B.6 C.2 D.29.已知直线与圆相切,则的值是()A.1 B. C. D.10.已知两条平行直线和之间的距离等于,则实数的值为()A. B. C.或 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正四棱锥的底面边长为,高为,则该四棱锥的侧面积是______________12.直线的倾斜角为__________.13.如图所示,E,F分别是边长为1的正方形的边BC,CD的中点,将其沿AE,AF,EF折起使得B,D,C三点重合.则所围成的三棱锥的体积为___________.14.若直线:与直线的交点位于第一象限,则直线的倾斜角的取值范围是___________.15.已知为所在平面内一点,且,则_____16.已知,,若与的夹角为钝角,则实数的取值范围为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的单调递减区间;(2)在锐角中,若角,求的值域.18.已知等差数列满足,,其前项和为.(1)求的通项公式及;(2)令,求数列的前项和,并求的值.19.如图,墙上有一壁画,最高点离地面4米,最低点离地面2米,观察者从距离墙米,离地面高米的处观赏该壁画,设观赏视角(1)若问:观察者离墙多远时,视角最大?(2)若当变化时,求的取值范围.20.已知函数的图象与轴正半轴的交点为,.(1)求数列的通项公式;(2)令(为正整数),问是否存在非零整数,使得对任意正整数,都有?若存在,求出的值,若不存在,请说明理由.21.一汽车厂生产,,三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有类轿车10辆.轿车轿车轿车舒适型100150标准型300450600(1)求的值;(2)用分层抽样的方法在类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2把这8辆轿车的得分看作一个总体,从中任取一个得分数,
记这8辆轿车的得分的平均数为,定义事件,且函数没有零点,求事件发生的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:由,可得,所以,故选B.考点:向量的运算.2、B【解析】
根据图像最大值和最小值可得,根据最大值和最小值的所对应的的值,可得周期,然后由,得到,代入点,结合的范围,得到答案.【详解】根据图像可得,,即,根据,得,所以,代入,得,所以,,所以,又因,所以得,所以得到,故选B.【点睛】本题考查根据函数图像求正弦型函数的解析式,属于简单题.3、A【解析】
由题可得:,将代入整理得:,利用点在线段的延长线上可得:,问题得解.【详解】由题可得:,所以可化为:整理得:,即:又点在线段的延长线上,所以与反向,所以,故选A【点睛】本题主要考查了平面向量中三点共线的推论,还考查了向量的减法及数乘向量的应用,考查了转化思想,属于中档题.4、A【解析】
依次求得的值,进而求得的值.【详解】当时,;当时,,;当时,;故.故选:A.【点睛】本小题主要考查根据递推关系式求数列每一项,属于基础题.5、A【解析】
求得圆心到直线的距离,然后和圆的半径比较大小,从而判定两者位置关系,得到答案.【详解】由题意,可得圆心到直线的距离为,所以直线与圆相交.故选:A.【点睛】本题主要考查了直线与圆的位置关系判定,其中解答中熟记直线与圆的位置关系的判定方法是解答的关键,着重考查了推理与计算能力,属于基础题.6、D【解析】
设出平面向量的夹角,求出的夹角,最后利用平面向量数量积的运算公式进行化简等式,最后利用辅助角公式求出的最大值.【详解】设平面向量的夹角为,因为是平面内两个互相垂直的向量,所以平面向量的夹角为,因为是平面内两个互相垂直的向量,所以.,,,其中,显然当时,有最大值,即.故选:D【点睛】本题考查平面向量数量积的性质及运算,属于中档题.7、D【解析】
以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,再利用向量法求出异面直线AE与BF所成角的余弦值.【详解】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,E,F分别是C1D1,CC1的中点,A(2,0,0),E(0,1,2),B(2,2,0),F(0,2,1),=(﹣2,1,2),=(﹣2,0,1),设异面直线AE与BF所成角的平面角为θ,则cosθ===,∴异面直线AE与BF所成角的余弦值为.故选D.【点睛】本题考查异面直线所成角的余弦值的求法,注意向量法的合理运用,属于基础题.8、B【解析】试题分析:因为,故.考点:基本不等式的运用,考查学生的基本运算能力.9、D【解析】
利用直线与圆相切的条件列方程求解.【详解】因为直线与圆相切,所以,,,故选D.【点睛】本题考查直线与圆的位置关系,通常利用圆心到直线的距离与圆的半径的大小关系进行判断,考查运算能力,属于基本题.10、C【解析】
利用两条平行线之间的距离公式可求的值.【详解】两条平行线之间的距离为,故或,故选C.【点睛】一般地,平行线和之间的距离为,应用该公式时注意前面的系数要相等.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】四棱锥的侧面积是12、【解析】试题分析:由直线方程可知斜率考点:直线倾斜角与斜率13、【解析】
根据折叠后不变的垂直关系,结合线面垂直判定定理可得到为三棱锥的高,由此可根据三棱锥体积公式求得结果.【详解】设点重合于点,如下图所示:,,又平面,平面,即为三棱锥的高故答案为:【点睛】本题考查立体几何折叠问题中的三棱锥体积的求解问题,处理折叠问题的关键是能够明确折叠后的不变量,即不变的垂直关系和长度关系.14、【解析】若直线与直线的交点位于第一象限,如图所示:则两直线的交点应在线段上(不包含点),当交点为时,直线的倾斜角为,当交点为时,斜率,直线的倾斜角为∴直线的倾斜角的取值范围是.故答案为15、【解析】
将向量进行等量代换,然后做出对应图形,利用平面向量基本定理进行表示即可.【详解】解:设,则根据题意可得,,如图所示,作,垂足分别为,则又,,故答案为.【点睛】本题考查了平面向量基本定理及其意义,两个向量的加减法及其几何意义,属于中档题.16、【解析】
由题意得出且与不共线,利用向量的坐标运算可求出实数的取值范围.【详解】由于与的夹角为钝角,则且与不共线,,,,解得且,因此,实数的取值范围是,故答案为:.【点睛】本题考查利用向量的夹角求参数,解题时要找到其转化条件,设两个非零向量与的夹角为,为锐角,为钝角.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解析】
(1)利用二倍角、辅助角公式化简,然后利用单调区间公式求解单调区间;(2)根据条件求解出的范围,然后再求解的值域.【详解】(1),令,解得:,所以单调减区间为:,;(2)由锐角三角形可知:,所以,则,又,所以,,则.【点睛】本题考查三角恒等变换以及三角函数值域问题,难度较易.根据三角形形状求解角范围的时候,要注意到隐含条件的使用.18、(1),;(2),【解析】
(1)利用等差数列的通项公式及前n项的和公式可得答案;(2)利用“裂项求和”法可得答案.【详解】解:(1)设等差数列的公差为,由,得,又,解得.所以.所以.(2)由,得.设的前项和为,则.【点睛】本题主要考查等差数列的通项公式及前n项的和,及数列求和的“裂项相消法”,属于中档题.19、(1)(2)3≤x≤1.【解析】试题分析:(1)利用两角差的正切公式建立函数关系式,根据基本不等式求最值,最后根据正切函数单调性确定最大时取法,(2)利用两角差的正切公式建立等量关系式,进行参变分离得,再根据a的范围确定范围,最后解不等式得的取值范围.试题解析:(1)当时,过作的垂线,垂足为,则,且,由已知观察者离墙米,且,则,所以,,当且仅当时,取“”.又因为在上单调增,所以,当观察者离墙米时,视角最大.(2)由题意得,,又,所以,所以,当时,,所以,即,解得或,又因为,所以,所以的取值范围为.20、(1);(2)存在,.【解析】
(1)把点A带入即可(2)根据(1)的计算出、,再解不等式即可【详解】(1)设,得,.所以;(2),若存在,满足恒成立即:,恒成立当为奇数时,当为偶数时,所以,故:.【点睛】本题考查了数列通项的求法,以及不等式恒成立的问题,不等式恒成立是一个难点,也是高考中的常考点,本题属于较难的题。21、(1)400;(2);(3)【解析】
(1)由分层抽样按比例可得;(2)把5个样本编号,用列举法列出任取2辆的所有基本事件,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 古代手工业经济与宗教建筑研究合同
- 装配式建筑部品部件装配式建筑部品部件生产设备选型与优化报告
- 环保产业园循环经济模式2025年废弃物资源化利用深度报告
- 2025年城市地下综合管廊建设项目资金申请与施工进度跟踪与评估报告
- 2025年房地产企业线上线下融合营销策略分析报告
- 物流配送中心仓储服务合同
- 生活服务平台建设与推广合同
- 商业合作伙伴关系建立与发展协议
- 养殖技术与农产品深加工合作协议
- 影视制作公司合作协议
- 银行贷款政策课件
- 宁海县三资管理办法
- 2025版本的房屋征收补偿协议
- 2025社区工作者考试试题(含答案)
- 【真题】人教版七年级下学期7月期末数学试题(含解析)湖南省长沙市长沙市一中教育集团联考2024-2025学年
- SAVI综合征靶向治疗研究进展
- 物业资产考试试题及答案
- 氧化钨化学计量比对其物理化学性质的影响规律
- 口腔诊所污水管理制度
- DZ/T 0275.5-2015岩矿鉴定技术规范第5部分:矿石光片鉴定
- 苹果授权协议书
评论
0/150
提交评论