2023-2024学年西安市东仪中学数学高一下期末学业水平测试试题含解析_第1页
2023-2024学年西安市东仪中学数学高一下期末学业水平测试试题含解析_第2页
2023-2024学年西安市东仪中学数学高一下期末学业水平测试试题含解析_第3页
2023-2024学年西安市东仪中学数学高一下期末学业水平测试试题含解析_第4页
2023-2024学年西安市东仪中学数学高一下期末学业水平测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年西安市东仪中学数学高一下期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若正实数满足,则的最小值为A. B. C. D.2.等差数列an的公差d<0,且a12=a212,则数列aA.9 B.10 C.10和11 D.11和123.已知向量,,若向量与的夹角为,则实数()A. B. C. D.4.已知数列中,,,且,则的值为()A. B. C. D.5.若,且,则()A. B. C. D.6.已知直线:,:,:,若且,则的值为A. B.10 C. D.27.已知是单位向量,.若向量满足()A. B.C. D.8.设正实数满足,则当取得最大值时,的最大值为()A.0 B.1 C. D.39.已知角的终边经过点,则的值是()A. B. C. D.10.如图,某人在点处测得某塔在南偏西的方向上,塔顶仰角为,此人沿正南方向前进30米到达处,测得塔顶的仰角为,则塔高为()A.20米 B.15米 C.12米 D.10米二、填空题:本大题共6小题,每小题5分,共30分。11.在中,,,,则的面积等于______.12.已知函数的图象如图所示,则不等式的解集为______.13.在等差数列中,若,则______.14.已知扇形的圆心角,扇形的面积为,则该扇形的弧长的值是______.15.记Sn为等比数列{an}的前n项和.若,则S5=____________.16.程的解为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在数列中,,.(1)求证:数列是等差数列;(2)求数列的前项和.18.已知为平面内不共线的三点,表示的面积(1)若求;(2)若,,,证明:;(3)若,,,其中,且坐标原点恰好为的重心,判断是否为定值,若是,求出该定值;若不是,请说明理由.19.已知,.(1)求;(2)求.20.已知数列的前项和(1)求的通项公式;(2)若数列满足:,求的前项和(结果需化简)21.已知函数(其中)的图象如图所示:(1)求函数的解析式及其对称轴的方程;(2)当时,方程有两个不等的实根,求实数的取值范围,并求此时的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

将变成,可得,展开后利用基本不等式求解即可.【详解】,,,,当且仅当,取等号,故选D.【点睛】本题主要考查利用基本不等式求最值,属于中档题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用或时等号能否同时成立).2、C【解析】

利用等差数列性质得到a11=0,再判断S10【详解】等差数列an的公差d<0,且a根据正负关系:S10或S故答案选C【点睛】本题考查了等差数列的性质,Sn的最大值,将Sn的最大值转化为3、B【解析】

根据坐标运算可求得与,从而得到与;利用向量夹角计算公式可构造方程求得结果.【详解】由题意得:,,,解得:本题正确选项:【点睛】本题考查利用向量数量积、模长和夹角求解参数值的问题,关键是能够通过坐标运算表示出向量和模长,进而利用向量夹角公式构造方程.4、A【解析】

由递推关系,结合,,可求得,,的值,可得数列是一个周期为6的周期数列,进而可求的值。【详解】因为,由,,得;由,,得;由,,得;由,,得;由,,得;由,,得由此推理可得数列是一个周期为6的周期数列,所以,故选A。【点睛】本题考查由递推关系求数列中的项,考查数列周期的判断,属基础题。5、A【解析】

利用二倍角的正弦公式和与余弦公式化简可得.【详解】∵,∴,∵,所以,∴,∴.故选:A【点睛】本题考查了二倍角的正弦公式,考查了二倍角的余弦公式,属于基础题.6、C【解析】

由且,列出方程,求得,,解得的值,即可求解.【详解】由题意,直线:,:,:,因为且,所以,且,解得,,所以.故选C.【点睛】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线的位置关系,列出方程求解的值是解答的关键,着重考查了推理与计算能力,属于基础题.7、A【解析】

因为,,做出图形可知,当且仅当与方向相反且时,取到最大值;最大值为;当且仅当与方向相同且时,取到最小值;最小值为.8、B【解析】

x,y,z为正实数,且,根据基本不等式得,当且仅当x=2y取等号,所以x=2y时,取得最大值1,此时,,当时,取最大值1,的最大值为1,故选B.9、D【解析】

首先计算出,根据三角函数定义可求得正弦值和余弦值,从而得到结果.【详解】由三角函数定义知:,,则:本题正确选项:【点睛】本题考查任意角三角函数的求解问题,属于基础题.10、B【解析】

设塔底为,塔高为,根据已知条件求得以及角,利用余弦定理列方程,解方程求得塔高的值.【详解】设塔底为,塔高为,故,由于,所以在三角形中,由余弦定理得,解得米.故选B.【点睛】本小题主要考查利用余弦定理解三角形,考查空间想象能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

先用余弦定理求得,从而得到,再利用正弦定理三角形面积公式求解.【详解】因为在中,,,由余弦定理得,所以由正弦定理得故答案为:【点睛】本题主要考查正弦定理和余弦定理的应用,还考查了运算求解的能力,属于中档题.12、【解析】

根据函数图象以及不等式的等价关系即可.【详解】解:不等式等价为或,

则,或,

故不等式的解集是.

故答案为:.【点睛】本题主要考查不等式的求解,根据不等式的等价性结合图象之间的关系是解决本题的关键.13、【解析】

利用等差中项的性质可求出的值.【详解】由等差中项的性质可得,解得.故答案为:.【点睛】本题考查利用等差中项的性质求项的值,考查计算能力,属于基础题.14、【解析】

先结合求出,再由求解即可【详解】由,则故答案为:【点睛】本题考查扇形的弧长和面积公式的使用,属于基础题15、.【解析】

本题根据已知条件,列出关于等比数列公比的方程,应用等比数列的求和公式,计算得到.题目的难度不大,注重了基础知识、基本计算能力的考查.【详解】设等比数列的公比为,由已知,所以又,所以所以.【点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式分式计算,部分考生易出现运算错误.16、【解析】

设,即求二次方程的正实数根,即可解决问题.【详解】设,即转化为求方程的正实数根由得或(舍)所以,则故答案为:【点睛】本题考查指数型二次方程,考查换元法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析.(2).【解析】

(1)根据数列通项公式的特征,我们对,两边同时除以,得到,利用等差数列的定义,就可以证明出数列是等差数列;(2)求出数列的通项公式,利用裂项相消法,求出数列的前n项和.【详解】(1)的两边同除以,得,又,所以数列是首项为4,公差为2的等差数列.(2)由(1)得,即,故,所以【点睛】本题考查了证明等差数列的方法以及用裂项相消法求数列前和.已知,都是等差数列,那么数列的前和就可以用裂项相消法来求解.18、(1);(2)详见解析;(3)是定值,值为,理由见解析.【解析】

(1)已知三点坐标,则可以求出三边长度及对应向量,由向量数量积公式可以求出夹角余弦值,从而算出正弦值,利用面积公式完成作答;(2)和(1)的方法一样,唯独不同在于(1)是具体值,而(2)中是参数,我们可以把参数当做整体(视为已知)能处理;(3)由恰好为的正心可以获取,而可以借助(2)的公式直接运用,本题也就完成作答.【详解】(1)因为,所以,,所以因为,所以,所以(2)因为,所以所以因为所以所以所以;(3)因为为的重心,所以由(1)可知又因为为的重心,所以,平方相加得:,即,所以所以,所以是定值,值为【点睛】已知三角形三点,去探究三角形面积问题,通过向量数量积为载体,算出相对应边所在向量的模长、夹角余弦值,进一步算出正弦值,从而算出面积,这三问存在层层递进的过程,从特殊到一般慢慢设问,非常好的一个探究性习题.19、(1),(2)【解析】

(1)由题意利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得和的值,可得的值(2)由题意利用二倍角公式,求得原式子的值.【详解】(1)∵已知,,,∴则(2)【点睛】本题主要考查同角三角函数的基本关系,两角和差的三角公式、二倍角公式的应用,以及三角函数在各个象限中的符号,属于基础题.20、(1);(2);【解析】

(1)运用数列的递推式得时,,时,,化简计算可得所求通项公式;(2)求得,运用数列的错位相减法求和,结合等比数列的求和公式,计算可得所求和.【详解】(1)可得时,则(2)数列满足,可得,即,前项和两式相减可得化简可得【点睛】本题考查数列的递推式的运用,考查数列的错位相减法求和,以及等比数列的求和公式,考查运算能力,属于中档题.21、(1),;(2),.【解析】

(1)根据图像得A=2,利用,求ω值,再利用时取到最大值可求φ,从而得到函数解析式,进而求得对称轴方程;(2)由得,方程f(x)=2a﹣3有两个不等实根转为f(x)的图象与直线y=2a﹣

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论