2023-2024学年北京东城区高一下数学期末预测试题含解析_第1页
2023-2024学年北京东城区高一下数学期末预测试题含解析_第2页
2023-2024学年北京东城区高一下数学期末预测试题含解析_第3页
2023-2024学年北京东城区高一下数学期末预测试题含解析_第4页
2023-2024学年北京东城区高一下数学期末预测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年北京东城区高一下数学期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,最小正周期为的是()A. B. C. D.2.在中,若则等于()A. B. C. D.3.已知为的三个内角的对边,,的面积为2,则的最小值为().A. B. C. D.4.在边长为2的菱形中,,是的中点,则A. B. C. D.5.三棱锥中,底面是边长为2的正三角形,⊥底面,且,则此三棱锥外接球的半径为()A. B. C. D.6.已知角A满足,则的值为()A. B. C. D.7.下列函数中,值域为的是()A. B. C. D.8.在正四棱柱中,,则点到平面的距离是()A. B. C. D.9.已知是奇函数,且.若,则()A.1 B.2 C.3 D.410.已知直三棱柱的所有棱长都相等,为的中点,则与所成角的余弦值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的前项和为,若,则______.12.一个几何体的三视图如图所示(单位:m),则该几何体的体积为.13.直线与圆交于两点,若为等边三角形,则______.14.已知,均为单位向量,它们的夹角为,那么__________.15.利用数学归纳法证明不等式“”的过程中,由“”变到“”时,左边增加了_____项.16.与终边相同的最小正角是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,底面为平行四边形,点为中点,且.(1)证明:平面;(2)证明:平面平面.18.记数列的前项和为,已知点在函数的图像上.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.19.某菜农有两段总长度为米的篱笆及,现打算用它们和两面成直角的墙、围成一个如图所示的四边形菜园(假设、这两面墙都足够长)已知(米),,,设,四边形的面积为.(1)将表示为的函数,并写出自变量的取值范围;(2)求出的最大值,并指出此时所对应的值.20.已知数列的前项和为,点在函数的图像上.(1)求数列的通项;(2)设数列,求数列的前项和.21.已知:以点为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中0为原点。(1)求证:的面积为定值;(2)设直线与圆C交于点M,N,若,求圆C的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由函数的最小正周期为,逐个选项运算即可得解.【详解】解:对于选项A,的最小正周期为,对于选项B,的最小正周期为,对于选项C,的最小正周期为,对于选项D,的最小正周期为,故选D.【点睛】本题考查了三角函数的最小正周期,属基础题.2、D【解析】

由正弦定理,求得,再由,且,即可求解,得到答案.【详解】由题意,在中,由正弦定理可得,即,又由,且,所以或,故选D.【点睛】本题主要考查了正弦定理的应用,其中解答中熟记三角形的正弦定理,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.3、D【解析】

运用三角形面积公式和余弦定理,结合三角函数的辅助角公式和正弦型函数的值域最后可求出的最小值.【详解】因为,所以,即,令,可得,于是有,因此,即,所以的最小值为,故本题选D.【点睛】本题考查了余弦定理、三角形面积公式,考查了辅助角公式,考查了数学运算能力.4、D【解析】

选取向量为基底,用基底表示,然后计算.【详解】由题意,,.故选D.【点睛】本题考查向量的数量积,平面向量的线性运算,解题关键是选取基底,把向量用基底表示.5、D【解析】

过的中心M作直线,则上任意点到的距离相等,过线段中点作平面,则面上的点到的距离相等,平面与的交点即为球心O,半径,故选D.考点:求解三棱锥外接球问题.点评:此题的关键是找到球心的位置(球心到4个顶点距离相等).6、A【解析】

将等式两边平方,利用二倍角公式可得出的值.【详解】,在该等式两边平方得,即,解得,故选A.【点睛】本题考查同角三角函数的基本关系,考查二倍角正弦公式的应用,一般地,解三角函数有关问题时,遇到,常用平方法来求解,考查计算能力,属于中等题.7、B【解析】

依次判断各个函数的值域,从而得到结果.【详解】选项:值域为,错误选项:值域为,正确选项:值域为,错误选项:值域为,错误本题正确选项:【点睛】本题考查初等函数的值域问题,属于基础题.8、A【解析】

计算的面积,根据可得点到平面的距离.【详解】中,,,∴的边上的高为,∴,设到平面的距离为,则,又,∴,解得.故选A.【点睛】本题涉及点面距离的求法,点面距可以通过建立空间直角坐标系来求得点面距离,或者寻找面面垂直,再直接过点做交线的垂线即可;当点面距离不好求时,也可以根据等积法把点到平面的距离归结为一个容易求得的几何体的体积.9、C【解析】

根据题意,由奇函数的性质可得,变形可得:,结合题意计算可得的值,进而计算可得答案.【详解】根据题意,是奇函数,则,变形可得:,则有,即,又由,则,,故选:.【点睛】本题考查函数奇偶性的性质以及应用,涉及诱导公式的应用,属于基础题.10、D【解析】

取的中点,连接,则,所以异面直线与所成角就是直线与所成角,在中,利用余弦定理,即可求解.【详解】由题意,取的中点,连接,则,所以异面直线与所成角就是直线与所成角,设正三棱柱的各棱长为,则,设直线与所成角为,在中,由余弦定理可得,即异面直线与所成角的余弦值为,故选D.【点睛】本题主要考查了异面直线所成角的求解,其中解答中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用和的关系计算得到答案.【详解】当时,满足通项公式故答案为【点睛】本题考查了和的关系,忽略的情况是容易发生的错误.12、【解析】该几何体是由两个高为1的圆锥与一个高为2的圆柱组合而成,所以该几何体的体积为.考点:本题主要考查三视图及几何体体积的计算.13、或【解析】

根据题意可得圆心到直线的距离为,根据点到直线的距离公式列方程解出即可.【详解】圆,即,圆的圆心为,半径为,∵直线与圆交于两点且为等边三角形,∴,故圆心到直线的距离为,即,解得或,故答案为或.【点睛】本题主要考查了直线和圆相交的弦长公式,以及点到直线的距离公式,考查运算能力,属于中档题.14、.【解析】分析:由,均为单位向量,它们的夹角为,求出数量积,先将平方,再开平方即可的结果.详解:∵,故答案为.点睛:平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).15、.【解析】

分析题意,根据数学归纳法的证明方法得到时,不等式左边的表示式是解答该题的突破口,当时,左边,由此将其对时的式子进行对比,得到结果.【详解】当时,左边,当时,左边,观察可知,增加的项数是,故答案是.【点睛】该题考查的是有关数学归纳法的问题,在解题的过程中,需要明确式子的形式,正确理解对应式子中的量,认真分析,明确哪些项是添的,得到结果.16、【解析】

根据终边相同的角的定义以及最小正角的要求,可确定结果.【详解】因为,所以与终边相同的最小正角是.故答案为:.【点睛】本题主要考查终边相同的角,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析【解析】

(1)连接交于点,连接,可证,从而可证平面.(2)可证平面,从而得到平面平面.【详解】(1)连接交于点,连接,因为底面为平行四边形,所以为中点.在中,又为中点,所以.又平面,平面,所以平面.(2)因为底面为平行四边形,所以.又即,所以.又即.又平面,平面,,所以平面.又平面,所以平面平面.【点睛】线面平行的证明的关键是在面中找到一条与已知直线平行的直线,找线的方法是平行投影或中心投影,我们也可以通过面面平行证线面平行,这个方法的关键是构造过已知直线的平面,证明该平面与已知平面平行.线面垂直的判定可由线线垂直得到,注意线线是相交的,也可由面面垂直得到,注意线在面内且线垂直于两个平面的交线.而面面垂直的证明可以通过线面垂直得到,也可以通过证明二面角是直二面角.18、(Ⅰ);(Ⅱ).【解析】

(1)本题首先可根据点在函数的图像上得出,然后根据与的关系即可求得数列的通项公式;(2)首先可根据数列的通项公式得出,然后根据裂项相消法求和即可得出结果。【详解】(1)由题意知.当时,;当时,,适合上式.所以.(2).则。【点睛】本题考查根据数列的前项和为求数列的通项公式,考查裂项相消法求和,与满足以及,考查计算能力,是中档题。19、(1),其中;(2)当时,取得最大值.【解析】

(1)在中,利用正弦定理将、用表示,然后利用三角形的面积公式可求出关于的表达式,结合实际问题求出的取值范围;(2)利用(1)中的关于的表达式得出的最大值,并求出对应的的值.【详解】(1)在中,由正弦定理得,所以,,则的面积为,因此,,其中;(2)由(1)知,.,,当时,即当时,四边形的面积取得最大值.【点睛】本题考查了正弦定理、三角形的面积公式、两角和与差的正弦公式、二倍角公式以及三角函数的基本性质,在利用三角函数进行求解时,要利用三角恒等变换思想将三角函数解析式化简,考查推理能力与计算能力,属于中等题.20、(1),(2)【解析】

(1)把点带入即可(2)根据(1)的结果利用错位相减即可。【详解】(1)把点带入得,则时,时,经验证,也满足,所以(2)由(1)得,所以则①②①②得【点睛】本题主要考查了数列通项的求法,以及数列前项和的方法。求数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论