版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川雅安中学2024届高一数学第二学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为锐角,,则()A. B. C. D.2.已知集合,集合为整数集,则()A. B. C. D.3.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数.例如:,,已知函数,则函数的值域为()A. B. C. D.4.在中,内角A,B,C的对边分别为a,b,c,若a,b,c依次成等差数列,,,依次成等比数列,则的形状为()A.等边三角形 B.等腰直角三角形C.钝角三角形 D.直角边不相等的直角三角形5.体积为的正方体的顶点都在同一球面上,则该球面的表面积为A. B. C. D.6.已知,集合,则A. B. C. D.7.已知等差数列中,,.若公差为某一自然数,则n的所有可能取值为()A.3,23,69 B.4,24,70 C.4,23,70 D.3,24,708.如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于()A. B. C. D.9.若不等式对实数恒成立,则实数的取值范围()A.或 B.C. D.10.根据如下样本数据x
3
4
5
6
7
8
y
可得到的回归方程为,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在公差为的等差数列中,有性质:,根据上述性质,相应地在公比为等比数列中,有性质:____________.12.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为.13.在直角坐标系中,直线与直线都经过点,若,则直线的一般方程是_____.14.已知直线,圆O:上到直线的距离等于2的点有________个。15.已知,则___________.16.设y=f(x)是定义域为R的偶函数,且它的图象关于点(2,0)对称,若当x∈(0,2)时,f(x)=x2,则f(19)=_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱锥中,,,,,为线段的中点,为线段上一点.(1)求证:平面平面;(2)当平面时,求三棱锥的体积.18.已知等差数列中,,,数列中,,其前项和满足:.(1)求数列、的通项公式;(2)设,求数列的前项和.19.已知△ABC的顶点A4,3,AB边上的高所在直线为x-y-3=0,D为AC中点,且BD所在直线方程为3x+y-7=0(1)求顶点B的坐标;(2)求BC边所在的直线方程。20.从半径为1的半圆出发,以此向内、向外连续作半圆,且后一个半圆的直径为前一个半圆的半径,如此下去,可得到无数个半圆.(1)求出所有这些半圆围城的封闭图形的周长;(2)求出所有这些半圆围城的封闭图形的面积.21.如图,在四棱锥中,底面为平行四边形,点为中点,且.(1)证明:平面;(2)证明:平面平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
先将展开并化简,再根据二倍角公式,计算可得。【详解】由题得,,整理得,又为锐角,则,,解得.故选:A【点睛】本题考查两角和差公式以及二倍角公式,是基础题。2、A【解析】试题分析:,选A.【考点定位】集合的基本运算.3、D【解析】
分离常数法化简f(x),根据新定义即可求得函数y=[f(x)]的值域.【详解】,又>0,∴,∴∴当x∈(1,1)时,y=[f(x)]=1;当x∈[1,)时,y=[f(x)]=1.∴函数y=[f(x)]的值域是{1,1}.故选D.【点睛】本题考查了新定义的理解和应用,考查了分离常数法求一次分式函数的值域,是中档题.4、A【解析】
根据a,b,c依次成等差数列,,,依次成等比数列,利用等差、等比中项的性质可知,根据基本不等式求得a=c,判断出a=b=c,推出结果.【详解】由a,b,c依次成等差数列,有2b=a+c(1)由,,成等比数列,有(2),由(1)(2)得,又根据,当a=c时等号成立,∴可得a=c,∴,综上可得a=b=c,所以△ABC为等边三角形.故选:A.【点睛】本题考查三角形的形状判断,结合等差、等比数列性质及基本不等式关系可得三边关系,从而求解,考查综合分析能力,属于中等题.5、A【解析】试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为,所以正方体的外接球的半径为,所以该球的表面积为,故选A.【考点】正方体的性质,球的表面积【名师点睛】与棱长为的正方体相关的球有三个:外接球、内切球和与各条棱都相切的球,其半径分别为、和.6、D【解析】
先求出集合A,由此能求出∁UA.【详解】∵U=R,集合A={x|1﹣2x>0}={x|x},∴∁UA={x|x}.故选:D.【点睛】本题考查补集的求法,考查补集定义、不等式性质等基础知识,考查运算求解能力,是基础题.7、B【解析】试题分析:由等差数列的通项公式得,公差,所以,可能为,的所有可能取值为选.考点:1.等差数列及其通项公式;2.数的整除性.8、D【解析】
在三角形中,利用正弦定理求得,然后在三角形中求得.【详解】在△BCD中,∠CBD=180°-15°-30°=135°.由正弦定理得=,所以BC=.在Rt△ABC中,AB=BCtan∠ACB=15×=15.故选:D【点睛】本小题主要考查正弦定理解三角形,考查解直角三角形,属于基础题.9、C【解析】
对m分m≠0和m=0两种情况讨论分析得解.【详解】由题得时,x<0,与已知不符,所以m≠0.当m≠0时,,所以.综合得m的取值范围为.故选C【点睛】本题主要考查一元二次不等式的恒成立问题,意在考查学生对该知识的理解掌握水平和分析推理能力.10、A【解析】试题分析:依据样本数据描点连线可知图像为递减且在轴上的截距大于0,所以.考点:1.散点图;2.线性回归方程;二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据题中条件,类比等差数列的性质,可直接得出结果.【详解】因为在公差为的等差数列中,有性质:,类比等差数列的性质,可得:在公比为等比数列中,故答案为:【点睛】本题主要考查类比推理,只需根据题中条件,结合等差数列与等比数列的特征,即可得出结果,属于常考题型.12、【解析】
直接利用长度型几何概型求解即可.【详解】因为区间总长度为,符合条件的区间长度为,所以,由几何概型概率公式可得,在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为,故答案为:.【点睛】解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度.13、【解析】
点代入的方程求出k,再由求出直线的斜率,即可写出直线的点斜式方程.【详解】将点代入直线得,,解得,又,,于是的方程为,整理得.故答案为:【点睛】本题考查直线的方程,属于基础题.14、3;【解析】
根据圆心到直线的距离和半径之间的长度关系,可通过图形确定所求点的个数.【详解】由圆的方程可知,圆心坐标为,半径圆心到直线的距离:如上图所示,此时,则到直线距离为的点有:,共个本题正确结果:【点睛】本题考查根据圆与直线的位置关系求解圆上点到直线距离为定值的点的个数,关键是能够根据圆心到直线的距离确定直线的大致位置,从而根据半径长度确定点的个数.15、;【解析】
把已知式平方可求得,从而得,再由平方关系可求得.【详解】∵,∴,即,∴,即,∴.故答案为.【点睛】本题考查同角三角函数关系,考查正弦的二倍角公式,在用平方关系求值时要注意结果可能有正负,因此要判断是否只取一个值.16、﹣1.【解析】
根据题意,由函数的奇偶性与对称性分析可得,即函数是周期为的周期函数,据此可得,再由函数的解析式计算即可.【详解】根据题意,是定义域为的偶函数,则,又由得图象关于点对称,则,所以,即函数是周期为的周期函数,所以,又当时,,则,所以.故答案为:.【点睛】本题考查函数的奇偶性与周期性的性质以及应用,注意分析函数的周期性,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)【解析】
(1)利用线面垂直判定定理得平面,可得;根据等腰三角形三线合一得,利用线面垂直判定定理和面面垂直判定定理可证得结论;(2)利用线面平行的性质定理可得,可知为中点,利用体积桥可知,利用三棱锥体积公式可求得结果.【详解】(1)证明:,平面又平面,为线段的中点平面平面平面平面(2)平面,平面平面为中点为中点三棱锥的体积为【点睛】本题考查面面垂直的证明、三棱锥体积的求解,涉及到线面垂直的判定和性质定理、面面垂直的判定定理、线面平行的性质定理、棱锥体积公式、体积桥方法的应用,属于常考题型.18、(1)(2)【解析】试题分析:(1)对于求得首项和公差即可求得数列的通项公式,对于,利用递推关系求解数列的通项公式即可;(2)利用数列的特点错位相减求解数列的前n项和即可.试题解析:(I)①②①-②得,为等比数列,(II)由两式相减,得点睛:一般地,如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{bn}的公比,然后作差求解.19、(1)B(0,7)(2)19x+y-7=0【解析】
(1)联立直线AB,BD的方程,求出点B坐标;(2)求出点C12,-52,利用B,C【详解】由A(4,3)及AB边上的高所在直线为x-y-3=0,得AB所在直线方程为x+y-7=0又BD所在直线方程为3x+y-7=0由3x+y-7=0x+y-7=0,得B(0,7)(2)设C(m,n),又A(4,3),D为AC中点,则Dm+4由已知得3×m+42+又B(0,7)得直线BC的方程为19x+y-7=0.【点睛】考查直线的垂直关系、直线的交点坐标、直线方程的求法等,考查运算求解能力.20、(1)(2)【解析】
(1)由第n个半圆的周长得,再利用无穷等比数列求和即可(2)由第n个半圆的面积得,再利用无穷等比数列求和即可【详解】(1)由题意知,圆的半径满足数列,设第n个半圆的周长为,所以,则所有这些半圆围成的封闭图形的周长.(2)题意知,设第n个半圆的面积为,则,所以所有这些半圆围成的封闭图形的面积将为.【点睛】本题考查无穷等比数列的和,注意圆的半径为等比数列,是周长及面积的考查,是基础题21、(1)证明见解析;(2)证明见解析【解析】
(1)连接交于点,连接,可证,从而可证平面.(2)可证平面,从而得到平面平面.【详解】(1)连接交于点,连接,因为底面为平行四边形,所以为中点.在中,又为中点,所以.又
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肱骨内髁骨折病因介绍
- 2024版全面推广新能源汽车充电设施合同3篇
- 荷花幼儿教育课件
- 基于二零二四年份的农业科技研发与推广合同2篇
- 六年级上册英语期中测试卷(1)-1小学英语教学教材课件
- 《客户关系管理实务》电子教案 4客户关系管理的含义(二)
- 北师大版七年级生物上册第1单元第2章第2节生物学研究的基本方法知识点课件
- 阿里云运维护航方案
- 智能制造生产线技术及应用 课件 项目四-4 FANUC工业机器人编程指令1
- 甲亢病因介绍
- 1999年央视春晚 赵本山宋丹丹小品《昨天今天明天》台词剧本
- 苏教版三年级数学上册期末试卷 试卷(10套)
- 前置胎盘处理流程
- 《大海与辛巴达的船》示范公开课教学课件【九年级音乐(人教版)】
- 2023年陕西长安电力华中发电有限公司招聘笔试题库及答案解析
- RB/T 040-2020病原微生物实验室生物安全风险管理指南
- GB/T 7106-2008建筑外门窗气密、水密、抗风压性能分级及检测方法
- 冷却塔检查保养表
- GB/T 5121.27-2008铜及铜合金化学分析方法第27部分:电感耦合等离子体原子发射光谱法
- GB/T 20001.5-2017标准编写规则第5部分:规范标准
- GB/T 1839-2008钢产品镀锌层质量试验方法
评论
0/150
提交评论