湖南省长沙市雨花区南雅中学2024届数学高一下期末预测试题含解析_第1页
湖南省长沙市雨花区南雅中学2024届数学高一下期末预测试题含解析_第2页
湖南省长沙市雨花区南雅中学2024届数学高一下期末预测试题含解析_第3页
湖南省长沙市雨花区南雅中学2024届数学高一下期末预测试题含解析_第4页
湖南省长沙市雨花区南雅中学2024届数学高一下期末预测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市雨花区南雅中学2024届数学高一下期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆关于直线对称,则的值是()A. B. C. D.2.已知点P为圆上一个动点,O为坐标原点,过P点作圆O的切线与圆相交于两点A,B,则的最大值为()A. B.5 C. D.3.在中,已知,那么一定是()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.正三角形4.平面内任一向量都可以表示成的形式,下列关于向量的说法中正确的是()A.向量的方向相同 B.向量中至少有一个是零向量C.向量的方向相反 D.当且仅当时,5.已知向量,,,且,则()A. B. C. D.6.一个三角形的三边长成等比数列,公比为,则函数的值域为()A.(,+∞) B.[,+∞) C.(,-1) D.[,-1)7.已知直角三角形ABC,斜边,D为AB边上的一点,,,则CD的长为()A. B. C.2 D.38.在三棱锥中,,,则三棱锥外接球的体积是()A. B. C. D.9.已知幂函数过点,令,,记数列的前项和为,则时,的值是()A.10 B.120 C.130 D.14010.执行如图所示的程序框图,则输出的s的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期为______________.12.数列满足,设为数列的前项和,则__________.13.向量.若向量,则实数的值是________.14.在空间直角坐标系中,点关于原点的对称点的坐标为__________.15.如图是一正方体的表面展开图.、、都是所在棱的中点.则在原正方体中:①与异面;②平面;③平面平面;④与平面形成的线面角的正弦值是;⑤二面角的余弦值为.其中真命题的序号是______.16.在中,,,面积为,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.“中国人均读书本(包括网络文学和教科书),比韩国的本、法国的本、日本的本、犹太人的本少得多,是世界上人均读书最少的国家”,这个论断被各种媒体反复引用.出现这样统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天名读书者进行调查,将他们的年龄分成段:,,,,,后得到如图所示的频率分布直方图.问:(1)估计在这名读书者中年龄分布在的人数;(2)求这名读书者年龄的平均数和中位数;(3)若从年龄在的读书者中任取名,求这两名读书者年龄在的人数恰为的概率.18.已知圆C:(x-1)2(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程19.经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量(千辆/h)与汽车的平均速度之间的函数关系式为:.(1)若要求在该段时间内车流量超过2千辆,则汽车在平均速度应在什么范围内?(2)在该时段内,若规定汽车平均速度不得超过,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?20.已知向量,满足:=4,=3,(Ⅰ)求·的值;(Ⅱ)求的值.21.已知点、、(),且.(1)求函数的解析式;(2)如果当时,两个函数与的图象有两个交点,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】圆关于直线对称,所以圆心(1,1)在直线上,得.故选B.2、A【解析】

作交于,连接设,得,,进而,换元,得,通过求得的范围即可求解【详解】作交于,连接设,则,∴取,∴.显然易知令,,当且仅当等号成立;此时∴故选A【点睛】本题考查圆的几何性质,切线的应用,弦长公式,考查函数最值得求解,考查换元思想,是难题3、B【解析】

先化简sinAcosB=sinC=,即得三角形形状.【详解】由sinAcosB=sinC得所以sinBcosA=0,因为A,B∈(0,π),所以sinB>0,所以cosA=0,所以A=,所以三角形是直角三角形.故答案为A【点睛】本题主要考查三角恒等变换和三角函数的图像性质,意在考查学生对这些知识的掌握水平和分析推理能力.4、D【解析】

根据平面向量的基本定理,若平面内任一向量都可以表示成的形式,构成一个基底,所以向量不共线.【详解】因为任一向量,根据平面向理的基本定理得,所以向量不共线,故A,C不正确.是一个基底,所以不能为零向量,故B不正确.因为不共线,且不能为零向量,所以若,当且仅当,故D正确.故选:D【点睛】本题主要考查平面向量的基本定理,还考查了理解辨析的能力,属于基础题.5、C【解析】

由可得,代入求解可得,则,进而利用诱导公式求解即可【详解】由可得,即,所以,因为,所以,则,故选:C【点睛】本题考查垂直向量的应用,考查里利用诱导公式求三角函数值6、D【解析】

由题意先设出三边为则由三边关系:两短边和大于第三边,分公比大于与公式在小于两类解出公比的取值范围,此两者的并集是函数的定义域,再由二次函数的性质求出它的值域,选出正确选项.【详解】解:设三边:则由三边关系:两短边和大于第三边,即

(1)当时,,即,解得;

(2)当时,为最大边,,即,解得,

综合(1)(2)得:,

又的对称轴是,故函数在上是减函数,在上是增函数,

由于时,与时,,

所以函数的值域为,故选:D.【点睛】本题考查等比数列的性质及二次函数的值域的求法,解答本题关键是熟练掌握等比数列的性质,能利用它建立不等式解出公比的取值范围得出函数的定义域,熟练掌握二次函数的性质也很重要,由此类题可以看出,扎实的双基,娴熟的基础知识与公式的记忆是解题的知识保障.7、A【解析】

设,利用勾股定理求出的值即得解.【详解】如图,由于,所以设,所以所以.故选:A【点睛】本题主要考查解直角三角形,意在考查学生对这些知识的理解掌握水平,属于基础题.8、B【解析】

三棱锥是正三棱锥,取为外接圆的圆心,连结,则平面,设为三棱锥外接球的球心,外接球的半径为,可求出,然后由可求出半径,进而求出外接球的体积.【详解】由题意,易知三棱锥是正三棱锥,取为外接圆的圆心,连结,则平面,设为三棱锥外接球的球心.因为,所以.因为,所以.设三棱锥外接球的半径为,则,解得,故三棱锥外接球的体积是.故选B.【点睛】本题考查了三棱锥的外接球体积的求法,考查了学生的空间想象能力与计算求解能力,属于中档题.9、B【解析】

根据幂函数所过点求得幂函数解析式,由此求得的表达式,利用裂项求和法求得的表达式,解方程求得的值.【详解】设幂函数为,将代入得,所以.所以,所以,故,由解得,故选B.【点睛】本小题主要考查幂函数解析式的求法,考查裂项求和法,考查方程的思想,属于基础题.10、A【解析】

模拟程序运行,观察变量值,判断循环条件可得结论.【详解】运行程序框图,,;,;,,此时满足条件,跳出循环,输出的.故选:A.【点睛】本题考查程序框图,考查循环结构,解题时只要模拟程序运行即可得结论.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用函数y=Atan(ωx+φ)的周期为,得出结论.【详解】函数y=3tan(3x)的最小正周期是,故答案为:.【点睛】本题主要考查函数y=Atan(ωx+φ)的周期性,利用了函数y=Atan(ωx+φ)的周期为.12、【解析】

先利用裂项求和法将数列的通项化简,并求出,由此可得出的值.【详解】,.,因此,,故答案为:.【点睛】本题考查裂项法求和,要理解裂项求和法对数列通项结构的要求,并熟悉裂项法求和的基本步骤,考查计算能力,属于中等题.13、-3【解析】

试题分析:∵,∴,又∵,∴,∴,∴考点:本题考查了向量的坐标运算点评:熟练运用向量的坐标运算是解决此类问题的关键,属基础题14、【解析】

空间直角坐标系中,关于原点对称,每个坐标变为原来的相反数.【详解】空间直角坐标系中,关于原点对称,每个坐标变为原来的相反数.点关于原点的对称点的坐标为故答案为:【点睛】本题考查了空间直角坐标系关于原点对称,属于简单题.15、①②④【解析】

将正方体的表面展开图还原成正方体,利用正方体中线线、线面以及面面关系,以及直线与平面所成角的定义和二面角的定义进行判断.【详解】根据条件将正方体进行还原如下图所示:对于命题①,由图形可知,直线与异面,命题①正确;对于命题②,、分别为所在棱的中点,易证四边形为平行四边形,所以,,平面,平面,平面,命题②正确;对于命题③,在正方体中,平面,由于四边形为平行四边形,,平面.、平面,,.则二面角所成的角为,显然不是直角,则平面与平面不垂直,命题③错误;对于命题④,设正方体的棱长为,易知平面,则与平面所成的角为,由勾股定理可得,,在中,,即直线与平面所成线面角的正弦值为,命题④正确;对于命题⑤,在正方体中,平面,且,平面.、平面,,,所以,二面角的平面角为,在中,由勾股定理得,,由余弦定理得,命题⑤错误.故答案为①②④.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面关系的判断以及线面角、二面角的计算,判断时要从空间中有关线线、线面、面面关系的平行或垂直的判定或性质定理出发进行推导,在计算空间角时,则应利用空间角的定义来求解,考查推理能力与运算求解能力,属于中等题.16、【解析】

由已知利用三角形面积公式可求c,进而利用余弦定理可求a的值,根据正弦定理即可计算求解.【详解】,,面积为,解得,由余弦定理可得:,所以,故答案为:【点睛】本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】

(1)识别频率直方图,注意其纵轴的意义;(2)在频率直方图中平均数是每组数据的组中值乘以频率,中位数是排在最中间的数;(3)求出古典概型中的基本事情总数和具体事件数,利用比值求解.【详解】(1)由频率分布直方图知,年龄在的频率为所以,名读书者年龄分布在的人数为人.(2)名读书者年龄的平均数为:设中位数为,解之得,即名读书者年龄的中位数为岁.(3)年龄在的读书者有人,记为,;年龄在的读数者有人,记为,,,从上述人中选出人,共有如下基本事件:,共有基本事件数为个,记选取的两名读者中恰好有一人年龄在中为事件,则事件包含的基本事件数为个:故.【点睛】本题考查识别频率直方图和样本的数字特征,属于基础题.18、(1);(2)【解析】(1)已知圆C:(x-1)2(2)当弦AB被点P平分时,l⊥PC,直线l的方程为y-2=-119、(1)﹒(2)时,最大车流量辆.【解析】

(1)根据题意,解不等式即可求得平均速度的范围.(2)将函数解析式变形,结合基本不等式即可求得最值,及取最值时的自变量值.【详解】(1)车流量(千辆/h)与汽车的平均速度之间的函数关系式为:.则,变形可得,解得,即汽车在平均速度应在内.(2)由,、变形可得,当且仅当,即时取等号,故当汽车的平均速度,车流量最大,最大车流量为千辆/h.【点睛】本题考查了一元二次不等式的解法,由基本不等式求最值,属于基础题.20、(Ⅰ)=2(Ⅱ)【解析】

(I)计算,结合两向量的模可得;(II)利用,把求模转化为向量的数量积运算.【详解】解:(Ⅰ)由题意得即又因为所以解得=2.(Ⅱ)因为,所以=16+36-4×2=4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论