2023-2024学年湖南岳阳第一中学高一数学第二学期期末联考模拟试题含解析_第1页
2023-2024学年湖南岳阳第一中学高一数学第二学期期末联考模拟试题含解析_第2页
2023-2024学年湖南岳阳第一中学高一数学第二学期期末联考模拟试题含解析_第3页
2023-2024学年湖南岳阳第一中学高一数学第二学期期末联考模拟试题含解析_第4页
2023-2024学年湖南岳阳第一中学高一数学第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年湖南岳阳第一中学高一数学第二学期期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若圆与圆外切,则()A.21 B.19 C.9 D.-112.抽查10件产品,设“至少抽到2件次品”为事件,则的对立事件是()A.至多抽到2件次品 B.至多抽到2件正品C.至少抽到2件正品 D.至多抽到一件次品3.若||=2cos15°,||=4sin15°,的夹角为30°,则等于()A. B. C.2 D.4.经过原点且倾斜角为的直线被圆C:截得的弦长是,则圆在轴下方部分与轴围成的图形的面积等于()A. B. C. D.5.如图,某船在A处看见灯塔P在南偏东方向,后来船沿南偏东的方向航行30km后,到达B处,看见灯塔P在船的西偏北方向,则这时船与灯塔的距离是:A.10kmB.20kmC.D.6.已知均为锐角,,则=A. B. C. D.7.已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为()A. B. C. D.8.直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的最小值为()A.1 B.2 C. D.9.直线在轴上的截距为,在轴上的截距为,则()A. B. C. D.10.为了得到的图象,只需将的图象()A.向右平移 B.向左平移 C.向右平移 D.向左平移二、填空题:本大题共6小题,每小题5分,共30分。11.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为100且支出在元的样本,其频率分布直方图如图,则支出在元的同学人数为________12.在边长为2的菱形中,,是对角线与的交点,若点是线段上的动点,且点关于点的对称点为,则的最小值为______.13.把函数的图像上各点向右平移个单位,再把横坐标变为原来的一半,纵坐标扩大到原来的4倍,则所得的函数的对称中心坐标为________14.在中,,,.若,,且,则的值为______________.15.设的内角、、的对边分别为、、,且满足.则______.16.设为使互不重合的平面,是互不重合的直线,给出下列四个命题:①②③④若;其中正确命题的序号为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)将化为的形式(,,)并求的最小正周期;(2)设,若在上的值域为,求实数、的值;(3)若对任意的和恒成立,求实数取值范围.18.已知函数.(1)求函数的单调减区间.(2)求函数的最大值并求取得最大值时的的取值集合.(3)若,求的值.19.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)1:12:13:44:520.已知函数,,且是R上的奇函数,(1)求实数a的值;(2)判断函数)的单调性(不必说明理由),并求不等式的解集;(3)若不等式对任意的恒成立,求实数b的取值范围.21.16种食品所含的热量值如下:111123123164430190175236430320250280160150210123(1)求数据的中位数与平均数;(2)用这两种数字特征中的哪一种来描述这个数据集更合适?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:因为,所以且圆的圆心为,半径为,根据圆与圆外切的判定(圆心距离等于半径和)可得,故选C.考点:圆与圆之间的外切关系与判断2、D【解析】

由对立事件的概念可知,直接写出其对立事件即可.【详解】“至少抽到2件次品”的对立事件为“至多抽到1件次品”,故选D【点睛】本题主要考查对立事件的概念,熟记对立事件的概念即可求解,属于基础题型.3、B【解析】分析:先根据向量数量积定义化简,再根据二倍角公式求值.详解:因为,所以选B.点睛:平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式;二是坐标公式;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.4、A【解析】

由已知利用垂径定理求得,得到圆的半径,画出图形,由扇形面积减去三角形面积求解.【详解】解:直线方程为,圆的圆心坐标为,半径为.圆心到直线的距离.则,解得.圆的圆心坐标为,半径为1.如图,,则,.,,圆在轴下方部分与轴围成的图形的面积等于.故选:.【点睛】本题考查直线与圆位置关系的应用,考查扇形面积的求法,考查计算能力,属于中档题.5、C【解析】

在中,利用正弦定理求出得长,即为这时船与灯塔的距离,即可得到答案.【详解】由题意,可得,即,在中,利用正弦定理得,即这时船与灯塔的距离是,故选C.【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.6、A【解析】因为,所以,又,所以,则;因为且,所以,又,所以;则====;故选A.点睛:三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.7、C【解析】试题分析:设的交点为,连接,则为所成的角或其补角;设正四棱锥的棱长为,则,所以,故C为正确答案.考点:异面直线所成的角.8、B【解析】

求得圆心到直线的距离,减去圆的半径,求得△ABP面积的最小时,三角形的高,由此求得△ABP面积的最小值.【详解】依题意设,故.圆的圆心为,半径为,所以圆上的点到直线的距离的最小值为(其中为圆心到直线的距离),所以△ABP面积的最小值为.故选:B【点睛】本小题主要考查圆上的点到直线的距离的最小值的求法,考查三角形面积的最值的求法,属于基础题.9、B【解析】

令求,利用求.【详解】令,由得:,所以令,由得:,所以,故选B.【点睛】本题考查了直线的截距问题,直线方程,令解出,得到直线的纵截距.令解出,得到直线的横截距.10、B【解析】

先利用诱导公式将函数化成正弦函数的形式,再根据平移变换,即可得答案.【详解】∵,∵,∴只需将的图象向左平移可得.故选:B.【点睛】本题考查诱导公式、三角函数的平移变换,考查逻辑推理能力和运算求解能力,求解时注意平移是针对自变量而言的.二、填空题:本大题共6小题,每小题5分,共30分。11、30【解析】

由频率分布直方图求出支出在元的概率,由此能力求出支出在元的同学的人数,得到答案.【详解】由频率分布直方图,可得支出在元的概率,,所以支出在元的同学的人数为人.【点睛】本题主要考查了频率分布直方图的应用,以及概率的计算,其中解答中熟记频率分布直方图的性质,合理求得相应的概率是解答的关键,着重考查了推理与运算能力,属于基础题.12、-6【解析】

由题意,然后结合向量共线及数量积运算可得,再将已知条件代入求解即可.【详解】解:菱形的对称性知,在线段上,且,设,则,所以,又因为,当时,取得最小值-6.故答案为:-6.【点睛】本题考查了平面向量的线性运算,重点考查了向量共线及数量积运算,属中档题.13、,【解析】

根据三角函数的图象变换,求得函数的解析式,进而求得函数的对称中心,得到答案.【详解】由题意,把函数的图像上各点向右平移个单位,可得,再把图象上点的横坐标变为原来的一半,可得,把函数纵坐标扩大到原来的4倍,可得,令,解得,所以函数的对称中心为.故答案为:.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的对称中心的求解,其中解答中熟练三角函数的图象变换,以及三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】,则.【考点】向量的数量积【名师点睛】根据平面向量的基本定理,利用表示平面向量的一组基地可以表示平面内的任一向量,利用向量的定比分点公式表示向量,计算数量积,选取基地很重要,本题的已知模和夹角,选作基地易于计算数量积.15、4【解析】

解法1有题设及余弦定理得.故.解法2如图4,过点作,垂足为.则,.由题设得.又,联立解得,.故.解法3由射影定理得.又,与上式联立解得,.故.16、④【解析】试题分析:根据线面平行的判定定理,面面平行的判定定理,面面平行的性质定理,及面面垂直的性质定理,对题目中的四个结论逐一进行分析,即可得到答案.解:当m∥n,n⊂α,,则m⊂α也可能成立,故①错误;当m⊂α,n⊂α,m∥β,n∥β,m与n相交时,α∥β,但m与n平行时,α与β不一定平行,故②错误;若α∥β,m⊂α,n⊂β,则m与n可能平行也可能异面,故③错误;若α⊥β,α∩β=m,n⊂α,n⊥m,由面面平行的性质,易得n⊥β,故④正确故答案为④考点:本题考查的知识点是平面与平面之间的位置关系,直线与平面之间的位置关系.点评:熟练掌握空间线与线,线与面,面与面之间的关系的判定方法及性质定理,是解答本题的关键,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2),,或,;(3).【解析】

(1)由三角函数的恒等变换公式和正弦函数的周期的公式,即可求解;(2)由正弦函数的图象与性质,讨论的范围,得到的方程组,即可求得的值;(3)对讨论奇数和偶数,由参数分离和函数的最值,即可求得的范围.【详解】(1)由题意,函数所以函数的最小正周期为.(2)由(1)知,当时,则,所以,即,令,则,函数,即,,当时,在为单调递增函数,可得且,即,解得;当时,在为单调递减函数,可得且,即,解得;综上可得,或,;(3)由(2)可知,当时,,当为奇数时,,即为,即恒成立,又由,即;当为偶数时,,即为,即恒成立,又由,即;综上可得,实数满足,即实数取值范围.【点睛】本题主要考查了三角恒等变换,以及三角函数的图象与性质的应用,其中解中熟练化简函数的解析式,合理应用三角函数的图象与性质,以及利用分类讨论和分离参数求解是解答的关键,着重考查了分类讨论思想,分离参数,以及推理与运算能力,属于中档试题.18、(1).(2)最大值是2,取得最大值时的的取值集合是.(3)【解析】

(1)利用三角恒等变换化简的解析式,再利用正弦函数的单调性,求得函数的单调区间;(2)根据的解析式以及正弦函数的最值,求得函数的最大值,以及取得最大值时的的取值集合;(3)根据题设条件求得,再利用二倍角的余弦公式求的值.【详解】(1),令,解得,所以的单调递减区间为;(2)由(1)知,故的最大值为2,此时,,解得,所以的最大值是2,取得最大值时的的取值集合是;(3),即,所以,所以.【点睛】本题主要考查三角函数的恒等变换,考查正弦型函数的图象和性质,熟练掌握正弦型函数的图象和性质是答题关键,属于中档题.19、(1)0.005;(2)平均分为73,众数为65,中位数为;(3)10【解析】

(1)根据频率之和为1,直接列式计算即可;(2)平均数等于每组的中间值乘以该组频率,再求和;众数指频率最大的一组的中间值;中位数两端的小长方形面积之和均为0.5;(3)根据题意分别求出,,,的人数,即可得出结果.【详解】(1)由频率分布直方图可得:,(2)平均分为众数为65分.中位数为(3)数学成绩在的人数为,在的人数为,在的人数为,在的人数为,在的人数为,所以数学成绩在之外的人数为100-5-20-40-25=10.【点睛】本题主要考查样本估计总体,由题中频率分布直方图,结合平均数、中位数等概念,即可求解,属于基础题型.20、(1)0(2),(3)【解析】

(1)根据奇函数的性质可得.,由此求得值(2)函数在上单调递增,根据单调性不等式即可(3)不等式..分离参数即可.【详解】(1),是上的奇函数..即得:.即,得:.,.(2)由(1)得.函数在上单调递增,由不等式得不等式.所以,解得不等式的解集为,.(3)由不等式在上恒成立,可得,即.当时,,当,时,.令,.故实数b的取值范围.【点睛】本题主要考查指数型复合函数的性质以及应用,函数的奇偶性的应用,以及函数的恒成立问题,属于中档题.21、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论