




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年益阳市重点中学数学高一下期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的最小正周期为,将该函数的图象向左平移个单位后,得到的图象对应的函数为偶函数,则的图象()A.关于点对称 B.关于直线对称C.关于点对称 D.关于直线对称2.已知点,则向量在方向上的投影为()A. B. C. D.3.在等腰梯形ABCD中,,点E是线段BC的中点,若,则A. B. C. D.4.正项等比数列与等差数列满足,,,则的大小关系为()A. B. C. D.不确定5.已知,那么()A. B. C. D.6.已知数列的前项和为,满足,则通项公式等于().A. B. C. D.7.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.8.在中,角A,B,C所对的边分别为a,b,c,且满足,若,则周长的最大值为()A.9 B.10 C.11 D.129.已知都是正数,且,则的最小值等于A. B.C. D.10.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,内角,,的对边分别为,,.若,,成等比数列,且,则________.12.已知二面角为60°,动点P、Q分别在面、内,P到的距离为,Q到的距离为,则P、Q两点之间距离的最小值为.13.若一组样本数据,,,,的平均数为,则该组样本数据的方差为14.若,则_______.15.如果奇函数f(x)在[3,7]上是增函数且最小值是5,那么f(x)在[-7,-3]上是_________.①减函数且最小值是-5;②减函数且最大值是-5;③增函数且最小值是-5;④增函数且最大值是-516.已知两个正实数x,y满足=2,且恒有x+2y﹣m>0,则实数m的取值范围是______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,,值域为,求常数、的值;18.已知函数是指数函数.(1)求的表达式;(2)判断的奇偶性,并加以证明(3)解不等式:.19.已知,是第四象限角,求和的值.20.设两个非零向量,不共线,如果,,.(1)求证:、、共线;(2)试确定实数,使和共线.21.近年来,某地大力发展文化旅游创意产业,创意维护一处古寨,几年来,经统计,古寨的使用年限x(年)和所支出的维护费用y(万元)的相关数据如图所示,根据以往资料显示y对x呈线性相关关系.(1)求出y关于x的回归直线方程;(2)试根据(1)中求出的回归方程,预测使用年限至少为几年时,维护费用将超过10万元?参考公式:对于一组数据,,…,,其回归方程的斜率和截距的最小二乘估计分别为.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由周期求出,按图象平移写出函数解析式,再由偶函数性质求出,然后根据正弦函数的性质判断.【详解】由题意,平移得函数式为,其为偶函数,∴,由于,∴.,,.∴是对称中心.故选:A.【点睛】本题考查求三角函数的解析式,考查三角函数的对称性的奇偶性.掌握三角函数图象变换是基础,掌握三角函数的性质是解题关键.2、A【解析】
,,向量在方向上的投影为,故选A.3、B【解析】
利用平面向量的几何运算,将用和表示,根据平面向量基本定理得,的值,即可求解.【详解】取AB的中点F,连CF,则四边形AFCD是平行四边形,所以,且因为,,,∴故选B.【点睛】本题主要考查了平面向量的基本定理的应用,其中解答中根据平面向量的基本定理,将用和进行表示,求得的值是解答的关键,着重考查了推理与运算能力,属于基础题.4、B【解析】
利用分析的关系即可.【详解】因为正项等比数列与等差数列,故又,当且仅当时“=”成立,又即,故,故选:B【点睛】本题主要考查等差等比数列的性质与基本不等式的“一正二定三相等”.若是等比数列,且,则若是等差数列,且,则5、C【解析】试题分析:由,得.故选B.考点:诱导公式.6、C【解析】
代入求得;根据可证得数列为等比数列,从而利用等比数列通项公式求得结果.【详解】当时,当且时,则,即数列是以为首项,为公比的等比数列本题正确选项:【点睛】本题考查数列通项公式的求解,关键是能够利用得到数列为等比数列,属于常规题型.7、B【解析】
该几何体由上下两部分组成的,上面是一个圆锥,下面是一个正方体,由体积公式直接求解.【详解】该几何体由上下两部分组成的,上面是一个圆锥,下面是一个正方体.∴该几何体的体积V64.故选:B.【点睛】本题考查了正方体与圆锥的组合体的三视图还原问题及体积计算公式,考查了推理能力与计算能力,属于基础题.8、D【解析】
利用正弦定理和三角函数关系式,求得的值,由角的范围求出角的的大小,再由条件和余弦定理列出方程,结合基本不等式,即可求解.【详解】由,根据正弦定理可得,因为,所以,所以,即,又由,所以,由余弦定理可得,又因为,当且仅当时等号成立,又由,所以,即,所以三角形的周长的最大值为.故选:D.【点睛】本题主要考查了正弦定理、余弦定理和正弦函数的性质,以及基本不等式的应用综合应用,着重考查了推理与运算能力,属于中档试题.9、C【解析】
,故选C.10、B【解析】由三视图可知,该几何体是一个棱长为的正方体挖去一个圆锥的组合体,正方体体积为,圆锥体积为几何体的体积为,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
A,B,C是三角形内角,那么,代入等式中,进行化简可得角A,C的关系,再由,,成等比数列,根据正弦定理,将边的关系转化为角的关系,两式相减可得关于的方程,解方程即得.【详解】因为,所以,所以.因为,,成等比数列,所以,所以,则,整理得,解得.【点睛】本题考查正弦定理和等比数列运用,有一定的综合性.12、【解析】
如图
分别作于A,于C,于B,于D,
连CQ,BD则,,
又
当且仅当,即点A与点P重合时取最小值.
故答案选C.【点睛】13、【解析】因为该组样本数据的平均数为2017,所以,解得,则该组样本数据的方差为.14、【解析】
对两边平方整理即可得解.【详解】由可得:,整理得:所以【点睛】本题主要考查了同角三角函数基本关系及二倍角的正弦公式,考查观察能力及转化能力,属于较易题.15、④【解析】
由题意结合奇函数的对称性和所给函数的性质即可求得最终结果.【详解】奇函数的函数图象关于坐标原点中心对称,则若奇函数f(x)在区间[3,7]上是增函数且最小值为1,那么f(x)在区间[﹣7,﹣3]上是增函数且最大值为﹣1.故答案为:④.【点睛】本题考查了奇函数的性质,函数的对称性及其应用等,重点考查学生对基础概念的理解和计算能力,属于中等题.16、(-∞,1)【解析】
由x+2y(x+2y)()(1),运用基本不等式可得x+2y的最小值,由题意可得m<x+2y的最小值.【详解】两个正实数x,y满足2,则x+2y(x+2y)()(1)(1+2)=1,当且仅当x=2y=2时,上式取得等号,x+2y﹣m>0,即为m<x+2y,由题意可得m<1.故答案为:(﹣∞,1).【点睛】本题考查基本不等式的运用:“乘1法”求最值,考查不等式恒成立问题解法,注意运用转化思想,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、,;或,;【解析】
先利用辅助角公式化简,再根据,值域为求解即可.【详解】.又则,当时,,此时当时,,此时故,;或,;【点睛】本题主要考查了三角函数的辅助角公式以及三角函数值域的问题,需要根据自变量的范围求出值域,同时注意正弦函数部分的系数正负,属于中等题型.18、(1)(2)见证明;(3)【解析】
(1)根据指数函数定义得到,检验得到答案.(2),判断关系得到答案.(3)利用函数的单调性得到答案.【详解】解:(1)∵函数是指数函数,且,∴,可得或(舍去),∴;(2)由(1)得,∴,∴,∴是奇函数;(3)不等式:,以2为底单调递增,即,∴,解集为.【点睛】本题考查了函数的定义,函数的奇偶性,解不等式,意在考查学生的计算能力.19、,【解析】
利用诱导公式可求的值,根据是第四象限角可求的值,最后根据三角函数的基本关系式可求的值,根据诱导公式及倍角公式可求的值.【详解】,又是第四象限角,所以,所以,.【点睛】本题考查同角的三角函数的基本关系式、诱导公式以及二倍角公式,此题属于基础题.20、(1)证明见解析(2)【解析】
(1)要证、、共线,只要证明存在实数,使得成立即可.
(2)利用向量共线的充要条件和两个非零向量与不共线即可求出.【详解】(1)证明:由.又,则.所以.所以、、共线.(2)和共线,则存在实数,使得成立.向量,不共
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人承包施工安全合同书样本
- 丙肝职业暴露课件
- 世界名城介绍
- 与静疗有关的课件
- 餐厅装修半包合同细则
- 宁波幼儿师范高等专科学校《逻辑学(批判性思维)》2023-2024学年第二学期期末试卷
- 江苏省徐州市睢宁县第一中学2024-2025学年高考第一次模拟考试英语试题含解析
- 不动产课件教学课件
- 南昌健康职业技术学院《中药药剂学实验》2023-2024学年第二学期期末试卷
- 山西医科大学晋祠学院《仿真实验》2023-2024学年第二学期期末试卷
- 煤矿安全监控系统施工方案
- 动火作业专项安全施工方案
- 《林业试验设计及数据分析》讲义
- 各种生活用纸售后服务方案
- (完整版)中医养生课程标准
- 2023年广东高考生物卷试题真题及答案详解(精校版)
- 风电场道路施工作业指导书方案
- 心理健康与身体健康
- 2022-2023学年北京市海淀区高二下学期期中练习数学试题【含答案】
- 01改变世界:计算机发展史趣谈
- 艺术课程标准(2022年版)
评论
0/150
提交评论